Manuel F. Ruiz-López

Learn More
Whereas many studies have been reported on the reactions of aliphatic hydrocarbons, the chemistry of cyclic hydrocarbons has not been explored extensively. In the present work, a theoretical study of the gas-phase unimolecular decomposition of cyclic alkyl radicals was performed by means of quantum chemical calculations at the CBS-QB3 level of theory.(More)
We report an enhanced sampling technique that allows to reach the multi-nanosecond timescale in quantum mechanics/molecular mechanics molecular dynamics simulations. The proposed technique, called horsetail sampling, is a specific type of multiple molecular dynamics approach exhibiting high parallel efficiency. It couples a main simulation with a large(More)
Dipolar, dipole-quadrupole and quadrupole-quadrupole static polarizabilities of the water molecule have been determined by ab initio calculations at coupled cluster level of theory with single, double and perturbative triple excitations CCSD(T) with an aug-cc-pVTZ basis set using a finite field and field-gradient method. The geometry dependence of(More)
The low-temperature oxidation of propane was investigated using a jet-stirred reactor at atmospheric pressure and two methods of analysis: gas chromatography and synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) with direct sampling through a molecular jet. The second method allowed the identification of products, such as(More)
This work reports a theoretical study of the gas-phase unimolecular decomposition of cyclobutane, cyclopentane and cyclohexane by means of quantum chemical calculations. A biradical mechanism has been envisaged for each cycloalkane, and the main routes for the decomposition of the biradicals formed have been investigated at the CBS-QB3 level of theory.(More)