Learn More
In humans, multisensory interaction is an important strategy for improving the detection of stimuli of different nature and reducing the variability of response. It is known that the presence of visual information affects the auditory perception in the horizontal plane (azimuth), but there are few researches that study the influence of vision in the(More)
In this work we report an illusion of proximity of a sound source created by a sonic crystal placed between the source and a listener. This effect seems, at first, paradoxical to naïve listeners since the sonic crystal is an obstacle formed by almost densely packed cylindrical scatterers. Even when the singular acoustical properties of these periodic(More)
Biological neural communications channels transport environmental information from sensors through chains of active dynamical neurons to neural centers for decisions and actions to achieve required functions. These kinds of communications channels are able to create information and to transfer information from one time scale to the other because of the(More)
Temporal perception is fundamental to environmental adaptation in humans and other animals. To deal with timing and time perception, organisms have developed multiple systems that are active over a broad range of order of magnitude, the most important being circadian timing, interval timing and millisecond timing. The circadian pacemaker is located in the(More)
We propose and discuss an open source real-time interface that focuses in the vast potential for interactive sound art creation emerging from biological neural networks, as paradigmatic complex systems for musical exploration. In particular, we focus on networks that are responsible for the generation of rhythmic patterns.The interface relies upon the idea(More)
In this work, we analyze the degree frequency distribution in the yeast protein interaction network by studying a previously proposed duplication network model. This model correctly predicts the observed degree distribution (a power law for large degree values and a departure from this behavior for small degree). We numerically and analytically characterize(More)
In this work we present a novel approach for interactive music generation based on the dynamics of biological neural networks. We develop SANTIAGO, a real-time environment built in Pd-Gem, which allows to assemble networks of realistic neuron models and map the activity of individual neurons to sound events (notes) and to modulations of the sound event(More)
Previous studies on the effect of spectral content on auditory distance perception (ADP) focused on the physically measurable cues occurring either in the near field (low-pass filtering due to head diffraction) or when the sound travels distances >15 m (high-frequency energy losses due to air absorption). Here, we study how the spectrum of a sound arriving(More)