Learn More
SWISS-MODEL (http://swissmodel.expasy.org) is a server for automated comparative modeling of three-dimensional (3D) protein structures. It pioneered the field of automated modeling starting in 1993 and is the most widely-used free web-based automated modeling facility today. In 2002 the server computed 120 000 user requests for 3D protein models.(More)
The allotetraploid plant Nicotiana tabacum (common tobacco) is a major crop species and a model organism, for which only very fragmented genomic sequences are currently available. Here we report high-quality draft genomes for three main tobacco varieties. These genomes show both the low divergence of tobacco from its ancestors and microsynteny with other(More)
Nicotiana sylvestris and Nicotiana tomentosiformis are members of the Solanaceae family that includes tomato, potato, eggplant and pepper. These two Nicotiana species originate from South America and exhibit different alkaloid and diterpenoid production. N. sylvestris is cultivated largely as an ornamental plant and it has been used as a diploid model(More)
We are investigating the nature of the chemical interactions between the neuropeptide Y (NPY) and its cell surface receptor (Y1). A previous study involving site-directed mutagenesis and computer-aided modelling (Walker et al., 1994) suggested that the C-terminal Tyr36 of NPY, known to be a key residue for receptor binding, might dock at a pocket formed by(More)
Capture and representation of scientific knowledge in a structured format are essential to improve the understanding of biological mechanisms involved in complex diseases. Biological knowledge and knowledge about standardized terminologies are difficult to capture from literature in a usable form. A semi-automated knowledge extraction workflow is presented(More)
This article collects opinions from leading scientists about how text mining can provide better access to the biological literature, how the scientific community can help with this process, what the next steps are, and what role future BioCreative evaluations can play. The responses identify several broad themes, including the possibility of fusing(More)
Systems Toxicology is the integration of classical toxicology with quantitative analysis of large networks of molecular and functional changes occurring across multiple levels of biological organization. Society demands increasingly close scrutiny of the potential health risks associated with exposure to chemicals present in our everyday life, leading to an(More)
MOTIVATION Analyses and algorithmic predictions based on high-throughput data are essential for the success of systems biology in academic and industrial settings. Organizations, such as companies and academic consortia, conduct large multi-year scientific studies that entail the collection and analysis of thousands of individual experiments, often over(More)
BACKGROUND Humans and other organisms are equipped with a set of responses that can prevent damage from exposure to a multitude of endogenous and environmental stressors. If these stress responses are overwhelmed, this can result in pathogenesis of diseases, which is reflected by an increased development of, e.g., pulmonary and cardiac diseases in humans(More)
High-throughput measurement technologies produce data sets that have the potential to elucidate the biological impact of disease, drug treatment, and environmental agents on humans. The scientific community faces an ongoing challenge in the analysis of these rich data sources to more accurately characterize biological processes that have been perturbed at(More)