Manuel Brenes

Learn More
The dry olive residue (DOR) obtained from the olive oil extraction process has toxic components against plants and microorganism growth, particularly monomeric phenols. In this investigation nine saprobic fungi were found to be capable of completely removing these phenols from the solid after 20 weeks of growth, although the rate depended on the type of(More)
The survival of foodborne pathogens in aqueous extracts of olive oil, virgin olive oil, vinegar, and several beverages was evaluated. Vinegar and aqueous extracts of virgin olive oil showed the strongest bactericidal activity against all strains tested. Red and white wines also killed most strains after 5 min of contact, black and green tea extracts showed(More)
The main change found in the phenolic composition of virgin olive oils of Arbequina, Hojiblanca, and Picual varieties during storage in darkness at 30 degrees C was the hydrolysis of the secoiridoid aglycons. This reaction gave rise to an increase in the free phenolics hydroxytyrosol and tyrosol in the oil. Filtration of oil and acidity influenced the(More)
The inhibitors involved in the lactic acid fermentation of table olives were investigated in aseptic olive brines of the Manzanilla and Gordal varieties. Phenolic and oleosidic compounds in these brines were identified by high-performance liquid chromatography with ultraviolet and electrospray ionization mass spectrometry detection, and several substances(More)
Extraction methods to determine olive oil phenols are not exhaustive. A procedure to test their effectiveness, based on the treatment of the extracted oil with 2 N HCl followed by analysis of phenols in the aqueous phase, has been developed. It was concluded, using this test, that 15-40% of phenols remained unextracted when the liquid/liquid extraction(More)
The individual evolution of phenolic compounds has been studied during the natural fermentation of black olives for the first time. Cyanidin 3-rutinoside and cyanidin 3-glucoside were the main anthocyanins identified in fresh olives, and they were not detected after 1 month of storage either in brine or in olive. The fruit colors were different when aerobic(More)
The bitter taste of olives is mainly caused by the phenolic compound named oleuropein and the mechanism of its hydrolysis during the processing of natural green olives was studied. First, a rapid chemical hydrolysis of oleuropein takes place at a high temperature of 40°C and at a low pH value of 2.8, but the chemical hydrolysis of the bitter compound is(More)
Virgin olive oils were subjected to simulated common domestic processing, including frying, microwave heating, and boiling with water in a pressure cooker. The impact of these processes on polyphenol content and physicochemical characteristics of oils was assessed. Thermal oxidation of oils at 180 degrees C caused a significant decrease in hydroxytyrosol-(More)
Phenolic compounds in Spanish virgin olive oils were characterized by HPLC. Simple phenols such as hydroxytyrosol, tyrosol, vanillic acid, p-coumaric acid, ferulic acid, and vanillin were found in most of the oils. The flavonoids apigenin and luteolin were also found in most of the oils. The dialdehydic form of elenolic acid linked to tyrosol and(More)
The most abundant phenolic compounds in olive oils are the phenethyl alcohols hydroxytyrosol and tyrosol. An optimized method to quantify the total concentration of these substances in olive oils has been described. It consists of the acid hydrolysis of the aglycons and the extraction of phenethyl alcohols with a 2 M HCl solution. Recovery of the phenethyl(More)