Learn More
Computational neuroscience combines theory and experiment to shed light on the principles and mechanisms of neural computation. This approach has been highly fruitful in the ongoing effort to understand velocity computation by the primate visual system. This Review describes the success of spatiotemporal-energy models in representing local-velocity(More)
"In vivo Brodmann mapping" or non-invasive cortical parcellation using MRI, especially by measuring cortical myelination, has recently become a popular research topic, though myeloarchitectonic cortical parcellation in humans previously languished in favor of cytoarchitecture. We review recent in vivo myelin mapping studies and discuss some of the different(More)
When blind people touch Braille characters, blood flow increases in visual areas, leading to speculation that visual circuitry assists tactile discrimination in the blind. We tested this hypothesis in a functional magnetic resonance imaging study designed to reveal activation appropriate to the nature of tactile stimulation. In late-blind individuals,(More)
Postnatal cortical synaptic development is characterized by stages of exuberant growth, pruning, and stabilization during adulthood. How gene expression orchestrates these stages of synaptic development is poorly understood. Here we report that synaptic growth-related gene expression alone does not determine cortical synaptic density changes across the(More)
Aerobic glycolysis (AG; i.e., nonoxidative metabolism of glucose despite the presence of abundant oxygen) accounts for 10%-12% of glucose used by the adult human brain. AG varies regionally in the resting state. Brain AG may support synaptic growth and remodeling; however, data supporting this hypothesis are sparse. Here, we report on investigations on the(More)
  • 1