Learn More
Due to deregulation of electricity industry, accurate load forecasting and predicting the future electricity demand play an important role in the regional and national power system strategy management. Electricity load forecasting is a challenging task because electric load has complex and nonlinear relationships with several factors. In this paper, two(More)
Emotion recognition from speech has noticeable applications in the speech-processing systems. In this paper, the effect of using a rich set of features including formant frequency related, pitch frequency related, energy, and the two first mel-frequency cepstral coefficients (MFCCs) on improving the performance of speech emotion recognition systems is(More)
The speech signal consists of linguistic information and also paralinguistic one such as emotion. The modern automatic speech recognition systems have achieved high performance in neutral style speech recognition, but they cannot maintain their high recognition rate for spontaneous speech. So, emotion recognition is an important step toward emotional speech(More)
Intrusion detection is well-known as an essential component to secure the systems in Information and Communication Technology (ICT). Based on the type of analyzing events, two kinds of Intrusion Detection Systems (IDS) have been proposed: anomaly-based and misuse-based. In this paper, three-layer Recurrent Neural Network (RNN) architecture with categorized(More)
Ever growing Internet causes the availability of information. However, it also provides a suitable space for malicious activities, so security is crucial in this virtual environment. The network intrusion detection system (NIDS) is a popular tool to counter attacks against computer networks. This valuable tool can be realized using machine learning methods(More)
Environmental concerns, increasing gasoline demand together with unpopularity of alternative energy sources to propel vehicles, have pushed on hybrid electric vehicles (HEVs) solutions. The main problem in battery management of HEVs is how to determine the battery state of charge (SOC). Estimation of SOC is an active area of research, and several approaches(More)
The estimation of state variables of dynamic systems in noisy environments has been an active research field in recent decades. In this way, Kalman filtering approach may not be robust in the presence of modeling uncertainties. So, several methods have been proposed to design robust estimators for the systems with uncertain parameters. In this paper, an(More)
Fault diagnosis of analog circuits is a key problem in the theory of circuit networks and has been investigated by many researchers in recent decades. In this paper, an active filter circuit is used as the circuit under test (CUT) and is simulated in both fault-free and faulty conditions. A modular neural network model is proposed in this paper for soft(More)
Artificial neural networks have been widely used in time series prediction. In this paper, multi-layer feedforward neural networks with optimized structures, using particle swarm optimization (PSO) algorithm, are used for hourly load prediction based on load time series of IEEE Reliability Test System. To have a small and appropriate feature subset, a(More)