Manping Lin

Learn More
Low fluid shear stress (FSS) is the mechanical environment encountered by osteoblasts in implanted bones or native bones of bed rest patients. High sensitivity of osteoblasts to low FSS is beneficial to osteogenesis. We hypothesize that this sensitivity might be regulated by chemical microenvironment provided by scaffolds. To confirm this hypothesis,(More)
The amount, type, and conformation of proteins adsorbed on an implanted biomaterial are believed to influence cell adhesion. Nevertheless, only a few research works have been dedicated to the contribution of protein adsorption force. To verify our hypothesis that the adsorption force of protein on biomaterial is another crucial mediator to cell adhesion,(More)
Programming such as stretching, compression and bending is indispensible to endow polyurethanes with shape memory effects. Despite extensive investigations on the contributions of programming processes to the shape memory effects of polyurethane, less attention has been paid to the nanostructures of shape memory polyurethanes surface during the programming(More)
Osteoblasts on implanted biomaterials sense both substrate chemistry and mechanical stimulus. The effects of substrate chemistry alone and mechanical stimulus alone on osteoblasts have been widely studied. This study investigates the optimal combination of substrate chemistry and 12dyn/cm(2) physiological flow shear stress (FSS) by examining their(More)
Natural bone tissue receives chemical and mechanical stimuli in physiological environment. The effects of material chemistry alone and mechanical stimuli alone on osteoblasts have been widely investigated. This study reports the synergistic influences of material chemistry and flow shear stress (FSS) on biological functions of osteoblasts. Self-assembled(More)
  • 1