Learn More
Aberrant WNT pathway signaling is an early progression event in 90% of colorectal cancers. It occurs through mutations mainly of APC and less often of CTNNB1 (encoding beta-catenin) or AXIN2 (encoding axin-2, also known as conductin). These mutations allow ligand-independent WNT signaling that culminates in abnormal accumulation of free beta-catenin in the(More)
Apoptosis is a programmed, physiological mode of cell death that plays an important role in tissue homeostasis. Understanding of the basic mechanisms that underlie apoptosis will point to potentially new targets of therapeutic treatment of diseases that show an imbalance between cell proliferation and cell loss. In order to conduct such research, techniques(More)
Aberrant hypermethylation of gene promoters is a major mechanism associated with inactivation of tumor-suppressor genes in cancer. We previously showed this transcriptional silencing to be mediated by both methylation and histone deacetylase activity, with methylation being dominant. Here, we have used cDNA microarray analysis to screen for genes that are(More)
The GATA family of transcription factors participates in gastrointestinal (GI) development. Increases in GATA-4 and -5 expression occur in differentiation and GATA-6 expression in proliferation in embryonic and adult settings. We now show that in colorectal cancer (CRC) and gastric cancer promoter hypermethylation and transcriptional silencing are frequent(More)
Hypoxia-inducible factor (HIF) plays an important role in renal tumourigenesis. In the majority of clear cell RCC (ccRCC), the most frequent and highly vascularized RCC subtype, HIF is constitutively activated by inactivation of the von Hippel-Lindau gene. Of the HIF subunits, HIF-2alpha appears to be more oncogenic than HIF-1alpha, in that HIF-2alpha(More)
The N-myc downstream regulated gene (NDRG) family of proteins consists of 4 members, NDRG1-4, which are well conserved through evolution. The first member to be discovered and responsible for the family name was NDRG1, because its expression is repressed by the proto-oncogenes MYCN and MYC. All family members are characterized by an α/β hydrolase-fold(More)
We have developed a transcriptome-wide approach to identify genes affected by promoter CpG island DNA hypermethylation and transcriptional silencing in colorectal cancer. By screening cell lines and validating tumor-specific hypermethylation in a panel of primary human colorectal cancer samples, we estimate that nearly 5% or more of all known genes may be(More)
PURPOSE The transcription factors GATA4 and GATA5 are involved in gastrointestinal development and are inactivated by promoter hypermethylation in colorectal cancer. Here, we evaluated GATA4/5 promoter methylation as potential biomarkers for noninvasive colorectal cancer detection, and investigated the role of GATA4/5 in colorectal cancer. EXPERIMENTAL(More)
BACKGROUND Identification of hypermethylated tumor suppressor genes in body fluids is an appealing strategy for the noninvasive detection of colorectal cancer. Here we examined the role of N-Myc downstream-regulated gene 4 (NDRG4) as a novel tumor suppressor and biomarker in colorectal cancer. METHODS NDRG4 promoter methylation was analyzed in human(More)
Tumors can escape from immunity by repressing leukocyte adhesion molecule expression on tumor endothelial cells and by rendering endothelial cells unresponsive to inflammatory activation. This endothelial cell anergy is induced by angiogenic growth factors and results in reduced leukocyte-vessel wall interactions, thereby attenuating infiltration of(More)