Learn More
In inertial human motion capture, a multitude of body segments are equipped with inertial measurement units, consisting of 3D accelerometers, 3D gyroscopes and 3D magnetometers. Relative position and orientation estimates can be obtained using the inertial data together with a biomechanical model. In this work we present an optimization-based solution to(More)
Starting from the electromagnetic theory, we derive a Bayesian non-parametric model allowing for joint estimation of the magnetic field and the magnetic sources in complex environments. The model is a Gaussian process which exploits the divergence- and curl-free properties of the magnetic field by combining well-known model components in a novel manner. The(More)
Measurements from magnetometers and inertial sensors (accelerometers and gyroscopes) can be combined to give 3D orientation estimates. In order to obtain accurate orientation estimates it is imperative that the magnetometer and inertial sensor axes are aligned and that the magnetometer is properly calibrated for both sensor errors as well as presence of(More)
This paper presents an approach for 6D pose estimation where MEMS inertial measurements are complemented with magnetometer measurements assuming that a model (map) of the magnetic field is known. The resulting estimation problem is solved using a Rao-Blackwellized particle filter. In our experimental study the magnetic field is generated by a magnetic coil(More)
In inertial motion capture, a multitude of body segments are equipped with inertial sensors, consisting of 3D accelerometers and 3D gyroscopes. Using an optimization-based approach to solve the motion capture problem allows for natural inclusion of biomechanical constraints and for modeling the connection of the body segments at the joint locations. The(More)
In this work we present an approach to combine measurements from inertial sensors (accelerometers and gyroscopes) with time of arrival measurements from an ultrawideband system for indoor positioning. Our algorithm uses a tightlycoupled sensor fusion approach, where we formulate the problem as a maximum a posteriori problem that is solved using an(More)
Anomalies in the ambient magnetic field can be used as features in indoor positioning and navigation. By using Maxwell’s equations, we derive and present a Bayesian non-parametric probabilistic modeling approach for interpolation and extrapolation of the magnetic field. We model the magnetic field components jointly by imposing a Gaussian process (GP) prior(More)
The recent introduction of high dynamic range (HDR) video cameras has enabled the development of image based lighting techniques for rendering virtual objects illuminated with temporally varying real world illumination. A key challenge in this context is that rendering realistic objects illuminated with video environment maps is computationally demanding.(More)