Learn More
Osteoclasts are specialized bone-resorbing cells derived from multipotent myeloid progenitor cells. They play a crucial homeostatic role in skeletal modeling and remodeling and destroy bone in many pathologic conditions. Receptor activator of NF-kappaB ligand (RANKL) is essential to osteoclastogenesis. In this study, we investigated the effects of(More)
Hispidulin, a flavonoid that is known to have anti-inflammatory and anti-oxidant effects, attenuates osteoclastogenesis and bone resorption. To investigate the molecular mechanism of its inhibitory effect on osteoclastogenesis, we employed the receptor activator of the nuclear factor κB (NF-κB) ligand (RANKL)-induced murine monocyte/macrophage RAW 264.7(More)
Hypoxia-inducible factor-1 (HIF-1) consists of two subunits, the HIF-1β, which is constitutively expressed, and HIF-1α, which is oxygen-responsive. HIF-1α is over-expressed in response to hypoxia, increasing transcriptional activity linked to tumor progression, angiogenesis, metastasis, and invasion. This study aimed to demonstrate that the natural(More)
Osteoclasts, derived from multipotent myeloid progenitor cells, play homeostatic roles in skeletal modeling and remodeling, but may also destroy bone in pathological conditions such as osteoporosis and rheumatoid arthritis. Osteoclast development depends critically on a differentiation factor, the receptor activator of NF-kappaB ligand (RANKL). In this(More)
Endochondral bone formation occurs when mesenchymal cells condense to differentiate into chondrocytes, the primary cell types of cartilage. The aim of the present study was to identify novel factors regulating chondrogenesis. We investigated whether kaempferol induces chondrogenic differentiation in clonal mouse chondrogenic ATDC5 cells. Kaempferol(More)
Hypoxia-inducible transcription factors (HIFs) play a pivotal role in the response of cells to hypoxia. HIFs are dimers of an oxygen-sensitive α-subunit (HIF-1α or HIF-2α), and a constitutively expressed β-subunit. In normoxia, HIF-1α is destabilized by post-translational hydroxylation of Pro-564 and Pro-402 by a family of oxygen-sensitive dioxygenases.(More)
The growth in height of the bone plate is a result of endochondral proliferation in epiphyseal growth plates and the conversion of chondrocytes into new bone. The control of chondrogenic differentiation and hypertrophy is critical for these processes. The present study was aimed to demonstrate the chondromodulating activity of Genkwadaphnin. ATDC5 cultures(More)
Materials with differing surfaces have been developed for clinical implant therapy in dentistry and orthopedics. This study was designed to evaluate bone response to titanium alloy containing Ti-32Nb-5Zr with nanostructure, anodic oxidation, heat treatment, and ibandronate coating. Rats were randomly assigned to two groups for implantation of titanium alloy(More)
Endochondral bone formation is the process by which mesenchymal cells condense to become chondrocytes, which ultimately form new bone. The process of chondrogenic differentiation and hypertrophy is critical for bone formation and as such is regulated by many factors. In this study, we aimed to indentify novel factors that regulate chondrogenesis. We(More)
  • 1