Manoharan Muruganathan

Learn More
Following the rapid development of the electronics industry and technology, it is expected that future electronic devices will operate based on functional units at the level of electrically active molecules or even atoms. One pathway to observe and characterize such fundamental operation is to focus on identifying isolated or coupled dopants in nanoscale(More)
In this paper, we report the finite element method (FEM) simulation of double-clamped graphene nanoelectromechanical (NEM) switches. Pull-in and pull-out characteristics are analyzed for graphene NEM switches with different dimensions and these are consistent with the experimental results. This numerical model is used to study the scaling nature of the(More)
The graphene nano-electro-mechanical switches are promising components due to their outstanding switching performance. However, most of the reported devices suffered from a large actuation voltages, hindering them from the integration in the conventional complementary metal-oxide-semiconductor (CMOS) circuit. In this work, we demonstrated the graphene(More)
Detection of individual molecular adsorption, which represents the ultimate resolution of gas sensing, has rarely been realized with solid-state devices. So far, only a few studies have reported detection of individual adsorption by measuring the variation of electronic transport stemming from the charge transfer of adsorbate. We report room-temperature(More)
In this paper we first present a new hybrid fabrication process of downscaled graphene nanodevices based on direct ultrafine milling process by using atomic-size helium ion beam and the electron beam lithography process. We then describe the bilayer graphene single carrier transistors (GSCTs) and their Coulomb oscillation characteristics at 1.7 K. Unique(More)
  • 1