Learn More
In a voltage-dependent sodium channel, the activation of voltage sensors upon depolarization leads to the opening of the pore gates. To elucidate the principles underlying this conformational coupling, we investigated a putative gating interface in domain III of the sodium channel using voltage-clamp fluorimetry and tryptophan-scanning mutagenesis. Most(More)
Voltage-dependent ion channels are crucial for generation and propagation of electrical activity in biological systems. The primary mechanism for voltage transduction in these proteins involves the movement of a voltage-sensing domain (D), which opens a gate located on the cytoplasmic side. A distinct conformational change in the selectivity filter near the(More)
The hallmark of many intracellular pore blockers such as tetra-alkylammonium compounds and local anesthetics is their ability to allosterically modify the movement of the voltage sensors in voltage-dependent ion channels. For instance, the voltage sensor of domain III is specifically stabilized in the activated state when sodium currents are blocked by(More)
Voltage-gated sodium channels are critical for the generation and propagation of electrical signals in most excitable cells. Activation of Na(+) channels initiates an action potential, and fast inactivation facilitates repolarization of the membrane by the outward K(+) current. Fast inactivation is also the main determinant of the refractory period between(More)
Solid tumors tend to have a more glycolytic metabolism leading to an accumulation of acidic metabolites in their cytosol, and consequently, their intracellular pH (pHi) turns critically lower if the cells do not handle the acid excess. Recently, it was proposed that the voltage gated proton channels (HV1) can regulate the pHi in several cancers. Here we(More)
Next-generation sequencing (NGS) has enriched the understanding of the human genome. However, homologous or repetitive sequences shared among genes frequently produce dubious alignments and can puzzle NGS mutation analysis, especially for paralogous potassium channels. Potassium inward rectifier (Kir) channels are important to establish the resting membrane(More)
Inward rectifying potassium - Kir - channels drive the resting potential to potassium reversal potential and, when disrupted, might be related to muscular diseases. Recently, Thyrotoxic Periodic Paralysis (TPP) has emerged as a channelopathy related to mutations in KCNJ18 gene, which encodes Kir2.6 channel. TPP is a neuromuscular disorder characterized by a(More)
Endocannabinoids are amphiphilic molecules that play crucial neurophysiological functions acting as lipid messengers. Antagonists and knockdown of the classical CB1 and CB2 cannabinoid receptors do not completely abolish many endocannabinoid activities, supporting the idea of a mechanism independent of receptors whose mode of action remains unclear. Here we(More)
  • 1