Learn More
Elucidating the human transcriptional regulatory network is a challenge of the post-genomic era. Technical progress so far is impressive, including detailed understanding of regulatory mechanisms for at least a few genes in multicellular organisms, rapid and precise localization of regulatory regions within extensive regions of DNA by means of cross-species(More)
Clerocidin, a diterpenoid with antibacterial and antitumor activity, stimulates in vitro DNA cleavage mediated by mammalian and bacterial topoisomerase (topo) II. Different from the classical topoisomerase poisons, clerocidin-stimulated breaks at guanines immediately preceding the sites of DNA cleavage are not resealed upon heat or salt treatment. To(More)
Chemical agents able to interfere with DNA topoisomerases are widespread in nature, and some of them have outstanding therapeutic efficacy in human cancer and infectious diseases. DNA topoisomerases are essential enzymes that govern DNA topology during fundamental nuclear metabolic processes. Topoisomerase-interfering compounds can be divided into two(More)
DNA Topoisomerase II (Top2) is an essential nuclear enzyme that regulates the topological state of the DNA, and a target of very effective anticancer drugs including anthracycline antibiotics. Even though several aspects of drug activity against Top2 are understood, the drug receptor site is not yet known. Several Top2 mutants have altered drug sensitivity(More)
The cytotoxic activity of mitoxantrone and related anthracenediones has been ascribed to the ability of these compounds to interfere with DNA topoisomerase II function, resulting in DNA cleavage stimulation. The molecular details of enzyme inhibition by these intercalating agents remain to be defined. In an attempt to identify the structural determinants(More)
Vitamin D3 [1α,25-(OH)(2)D(3)], involved in the regulation of body calcium homeostasis, promotes immature myeloid precursor cells differentiation into monocytes/macrophages. In this study we compared the regulatory interaction between 1α,25-(OH)(2)D(3) and tumor necrosis factor (TNF)-α or lipopolysaccharide (LPS) in the mRNA expression of interleukin(More)
G-Quadruplexes, noncanonical nucleic acid structures, act as silencers in the promoter regions of human genes; putative G-quadruplex forming sequences are also present in promoters of other mammals, yeasts, and prokaryotes. Here we show that also the HIV-1 LTR promoter exploits G-quadruplex-mediated transcriptional regulation with striking similarities to(More)
Streptonigrin stimulated unique intensity patterns of topoisomerase II-mediated DNA cleavage in agarose and sequencing gels with no similarity to those of doxorubicin, VM-26,4'(9-acridinylamino)-methanesulfon-m-anisidide, genistein, and mitoxantrone. Surprisingly, a statistical analysis of 60 sites stimulated by streptonigrin in SV40 and pBR322 DNAs showed(More)
A 6-aminoquinolone derivative, WM5, which bears a methyl substituent at the N-1 position and a 4-(2-pyridyl)-1-piperazine moiety at position 7 of the bicyclic quinolone ring system, was previously shown to exhibit potent activity against replication of human immunodeficiency virus type 1 (HIV-1) in de novo-infected human lymphoblastoid cells (V. Cecchetti(More)
Topoisomerases are vital enzymes specialized in controlling DNA topology, in particular supercoiling and decatenation, to properly handle nucleic acid packing and cell dynamics. The type IIA enzymes act by cleaving both strands of a double helix and having another strand from the same or another molecule cross the DNA gate before a re-sealing event(More)