Manjeet K. Rao

Learn More
Homeobox genes encode transcription factors that are essential for normal development and are often dysregulated in cancers. The molecular mechanisms that cause their misregulation in cancers are largely unknown. In this study, we investigate the mechanism by which the Six1 homeobox protein, which has a crucial role during development, is frequently(More)
Increasing evidence suggests that chromosomal regions containing microRNAs are functionally important in cancers. Here, we show that genomic loci encoding miR-204 are frequently lost in multiple cancers, including ovarian cancers, pediatric renal tumors, and breast cancers. MiR-204 shows drastically reduced expression in several cancers and acts as a potent(More)
RNA interference (RNAi) is an efficient method for silencing genes in cultured cells. Here we describe a simple RNAi approach for silencing genes in a cell type-specific and tissue-specific way in vivo. The approach, which mimics the means by which naturally occurring 'microRNA's are generated, uses a tissue-specific polymerase II promoter to drive the(More)
Although many genes are expressed selectively in Sertoli cells, regulatory sequences sufficient to drive Sertoli cell-specific expression in the postnatal and adult testis in vivo have not been identified. In the present study, we identified promoter sequences from the Pem homeobox gene that direct Sertoli cell-specific expression in an androgen-dependent(More)
How Sertoli-specific expression is initiated is poorly understood. Here, we address this issue using the proximal promoter (Pp) from the Rhox5 homeobox gene. Its Sertoli cell-specific expression is achieved, in part, through a negative regulatory element that inhibits Pp transcription in non-Sertoli cell lines. Complementing this negative regulation is(More)
Prostate cancer cells escape growth inhibition from transforming growth factor β (TGFβ) by downregulating TGFβ receptors. However, the mechanism by which cancer cells downregulate TGFβ receptors in prostate is not clear. Here, we showed that coordinated action of miR-21 and androgen receptor (AR) signaling had a critical role in inhibiting TGFβ receptor II(More)
Decoupling of transcription and translation during postmeiotic germ cell differentiation is critical for successful spermatogenesis. Here we establish that the interaction between microRNAs and actin-associated protein Arpc5 sets the stage for an elaborate translational control mechanism by facilitating the sequestration of germ cell mRNAs into(More)
Although decades of research have established that androgen is essential for spermatogenesis, androgen's mechanism of action remains elusive. This is in part because only a few androgen-responsive genes have been definitively identified in the testis. Here, we propose that microRNAs--small, non-coding RNAs--are one class of androgen-regulated trans-acting(More)
A thorough understanding of the events during mammalian spermatogenesis requires studying specific molecular signatures of individual testicular cell populations as well as their interaction in co-cultures. However, most purification techniques to isolate specific testicular cell populations are time-consuming, require large numbers of animals, and/or are(More)