Manja Wachsmuth

Learn More
Riboswitches are regulatory RNA elements typically located in the 5'-untranslated region of certain mRNAs and control gene expression at the level of transcription or translation. These elements consist of a sensor and an adjacent actuator domain. The sensor usually is an aptamer that specifically interacts with a ligand. The actuator contains an intrinsic(More)
Although previous studies have documented a bottleneck in the transmission of mtDNA genomes from mothers to offspring, several aspects remain unclear, including the size and nature of the bottleneck. Here, we analyze the dynamics of mtDNA heteroplasmy transmission in the Genomes of the Netherlands (GoNL) data, which consists of complete mtDNA genome(More)
The mitochondrial (mt) genome is present in many copies in human cells, and intra-individual variation in mtDNA sequences is known as heteroplasmy. Recent studies found that heteroplasmies are highly tissue-specific, site-specific, and allele-specific, however the functional implications have not been explored. This study investigates variation in mtDNA(More)
Riboswitches have gained attention as tools for synthetic biology, since they enable researchers to reprogram cells to sense and respond to exogenous molecules. In vitro evolutionary approaches produced numerous RNA aptamers that bind such small ligands, but their conversion into functional riboswitches remains difficult. We previously developed a(More)
Riboswitches are RNA-based regulators of gene expression composed of a ligand-sensing aptamer domain followed by an overlapping expression platform. The regulation occurs at either the level of transcription (by formation of terminator or antiterminator structures) or translation (by presentation or sequestering of the ribosomal binding site). Due to a(More)
In this chapter, we review both computational and experimental aspects of de novo RNA sequence design. We give an overview of currently available design software and their limitations, and discuss the necessary setup to experimentally validate proper function in vitro and in vivo. We focus on transcription-regulating riboswitches, a task that has just(More)
  • 1