Manisha Verma

Learn More
In this paper, we study one important source of the mis-match between user data and relevance judgments, those due to the high degree of effort required by users to identify and consume the information in a document. Information retrieval relevance judges are trained to search for evidence of relevance when assessing documents. For complex documents, this(More)
A real world problem of image retrieval and searching is considered in this paper. In modern generation, managing images from a large storage medium is not a straightforward job. Many researchers have worked on texture features, and produced diverse feature descriptors based on uniform, rotation invariant, edges and directional properties. However, most of(More)
Document relevance has been the primary focus in the design, optimization and evaluation of retrieval systems. Traditional testcollections are constructed by asking judges the relevance grade for a document with respect to an input query. Recent work of Yilmaz et al. found an evidence that effort is another important factor in determining document utility,(More)
Research in Information Retrieval has traditionally focused on serving the best results for a single query, ignoring the reasons (or the task) that might have motivated the user to submit that query. Often times search engines are used to complete complex tasks (information needs); achieving these tasks with current search engines requires users to issue(More)
In this paper we describe experiments conducted for CLEFIP 2011 Prior Art Retrieval track. We examined the impact of 1) using key phrase extraction to generate queries from input patent and 2) the use of citation network and (International Patent Classification) IPC class vector in ranking patents. Variations of a popular key phrase extraction technique(More)