Learn More
High resolution diffusion tensor images of the mouse brain were acquired using the pulsed gradient spin echo sequence and the oscillating gradient spin echo sequence. The oscillating gradient spin echo tensor images demonstrated frequency-dependent changes in diffusion measurements, including apparent diffusion coefficient and fractional anisotropy, in(More)
Regional heterogeneity in cortical cyto- and myeloarchitecture forms the structural basis of mapping of cortical areas in the human brain. In this study, we investigate the potential of diffusion MRI to probe the microstructure of cortical gray matter and its region-specific heterogeneity across cortical areas in the fixed human brain. High angular(More)
Mouse models of Huntington's disease (HD) that recapitulate some of the phenotypic features of human HD, play a crucial role in investigating disease mechanisms and testing potential therapeutic approaches. Longitudinal studies of these models can yield valuable insights into the temporal course of disease progression and the effect of drug treatments on(More)
PURPOSE To investigate if frequency-dependent contrasts using oscillating gradient diffusion MRI (dMRI) can detect hypoxia-ischemia (HI) -induced neurodegeneration in the neonatal mouse hippocampus. METHODS Pulsed- and oscillating-gradient dMR images (at 50, 100, and 150 Hz) were acquired from postmortem fixed brains of mice exposed to neonatal HI using(More)
Huntington's disease (HD) displays progressive striatal atrophy that occurs long before the onset of clinical motor symptoms. As there is no treatment for the disease once overt symptoms appear, it has been suggested that neuroprotective therapy given during this presymptomatic period might slow progression of the disease. This requires biomarkers that can(More)
Stereotaxic atlases of the mouse brain are important in neuroscience research for targeting of specific internal brain structures during surgical operations. The effectiveness of stereotaxic surgery depends on accurate mapping of the brain structures relative to landmarks on the skull. During postnatal development in the mouse, rapid growth-related changes(More)
In this chapter, we introduce modern magnetic resonance imaging (MRI)-based mouse brain atlases. Although unable to match the resolution and specificity of their histology-based counterparts, MRI-based mouse brain atlases feature higher anatomical fidelity and can facilitate high-throughput computer-assisted analysis of certain brain phenotypes. This(More)
Diffusion tensor imaging is gaining increasing importance for anatomical imaging of the developing mouse brain. However, the application of diffusion tensor imaging to mouse brain imaging at microscopic levels is hindered by the limitation on achievable spatial resolution. In this study, fast diffusion tensor microimaging of the mouse brain, based on a(More)
Diffusion tensor imaging (DTI) is a useful tool for studying anatomy and pathology in the rodent central nervous system (CNS).The unique tissue contrasts provided by DTI are well suited for monitoring disease progression, studying brain development, and characterizing anatomical phenotypes. Recent technical developments have vastly improved the speed and(More)
Previous studies in the developing mouse thalamus have demonstrated that regional identity is established during early stages of development (Suzuki-Hirano et al. J. Comp. Neurol. 2011;519:528-543). However, the developing thalamus often shows little resemblance to the anatomical organization of the postnatal thalamus, making it difficult to identify genes(More)