Manish Kushwaha

Learn More
Wireless sensor networks consist of small, inexpensive devices which interact with the environment, communicate with each other, and perform distributed computations in order to monitor spatio-temporal phenomena. These devices are ideally suited for a variety of applications including object tracking, environmental monitoring, and homeland security. At(More)
We present a mobile acoustic beacon based sensor node localization method. Our technique is passive in that the sensor nodes themselves do not need to generate an acoustic signal for ranging. This saves cost, power and provides stealthy operation. Furthermore, the beacon can generate much more acoustic energy than a severely resource constrained sensor(More)
The unicellular eukaryote Trypanosoma brucei is unusual in having very little transcriptional control. The bulk of the T. brucei genome is constitutively transcribed by RNA polymerase II (Pol II) as extensive polycistronic transcription units. Exceptions to this rule include several RNA Pol I transcription units such as the VSG expression sites (ESs), which(More)
Heterogeneous sensor networks are comprised of ensembles of small, smart, and cheap sensing and computing devices that permeate the environment, as well as resource intensive sensors such as satellite imaging systems, meteorological stations, and security cameras. Emergency response, homeland security, and many other applications have a very real need to(More)
The paper describes a target tracking system running on a heterogeneous sensor network (HSN) and presents results gathered from a realistic deployment. The system fuses audio direction of arrival data from mote class devices and object detection measurements from embedded PCs equipped with cameras. The acoustic sensor nodes perform beamforming and measure(More)
The power system is a dynamic system and it is constantly being subjected to disturbances. It is important that these disturbances do not drive the system to unstable conditions. For this purpose, additional signal derived from deviation, excitation deviation and accelerating power are injected into voltage regulators. The device to provide these signals is(More)
Developing predictive models of multi-protein genetic systems to understand and optimize their behavior remains a combinatorial challenge, particularly when measurement throughput is limited. We developed a computational approach to build predictive models and identify optimal sequences and expression levels, while circumventing combinatorial explosion.(More)
Trypanosoma brucei mono-allelically expresses one of approximately 1500 variant surface glycoprotein (VSG) genes while multiplying in the mammalian bloodstream. The active VSG is transcribed by RNA polymerase I in one of approximately 15 telomeric VSG expression sites (ESs). T. brucei is unusual in controlling gene expression predominantly(More)
Heterogeneous sensor networks consisting of networked devices embedded into the physical world have a significant role in pervasive computing systems. Such sensor networks may contain wireless sensor networks that are ensembles of small, smart, and cheap sensing and computing devices that permeate the environment, as well as high-bandwidth rich sensors such(More)