Learn More
Opening of the mitochondrial permeability transition pore (MPTP) is thought to be a critical event in mediating the damage to hearts that accompanies their reperfusion following prolonged ischaemia. Protection from reperfusion injury occurs if the prolonged ischaemic period is preceded by short ischaemic periods followed by recovery. Here we investigate(More)
Studies with different ATP-sensitive potassium (K(ATP)) channel openers and blockers have implicated opening of mitochondrial K(ATP) (mitoK(ATP)) channels in ischaemic preconditioning (IPC). It would be predicted that this should increase mitochondrial matrix volume and hence respiratory chain activity. Here we confirm this directly using mitochondria(More)
Inhibition of mitochondrial permeability transition pore (MPTP) opening at reperfusion is critical for cardioprotection by ischemic preconditioning (IP). Some studies have implicated mitochondrial protein phosphorylation in this effect. Here we confirm that mitochondria rapidly isolated from preischemic control and IP hearts show no significant difference(More)
A mitochondrial sulphonylurea-sensitive, ATP-sensitive K+ channel (mitoKATP) that is selectively inhibited by 5-hydroxydecanoate (5-HD) and activated by diazoxide has been implicated in ischaemic preconditioning. Here we re-evaluate the evidence for the existence of this mitoKATP by measuring changes in light scattering (A520) in parallel with direct(More)
  • 1