Learn More
We investigate texture classification from single images obtained under unknown viewpoint and illumination. A statistical approach is developed where textures are modelled by the joint probability distribution of filter responses. This distribution is represented by the frequency histogram of filter response cluster centres (textons). Recognition proceeds(More)
We investigate the problem of learning optimal descriptors for a given classification task. Many hand-crafted descriptors have been proposed in the literature for measuring visual similarity. Looking past initial differences, what really distinguishes one descriptor from another is the tradeoff that it achieves between discriminative power and invariance.(More)
Our objective is to obtain a state-of-the art object category detector by employing a state-of-the-art image classifier to search for the object in all possible image sub-windows. We use multiple kernel learning of Varma and Ray (ICCV 2007) to learn an optimal combination of exponential &#x03C7;<sup>2</sup> kernels, each of which captures a different(More)
In this paper, we investigate material classification from single images obtained under unknown viewpoint and illumination. It is demonstrated that materials can be classified using the joint distribution of intensity values over extremely compact neighborhoods (starting from as small as 3times3 pixels square) and that this can outperform classification(More)
This paper tackles the problem of recognizing characters in images of natural scenes. In particular, we focus on recognizing characters in situations that would traditionally not be handled well by OCR techniques. We present an annotated database of images containing English and Kannada characters. The database comprises of images of street scenes taken in(More)
We address the problem of developing discriminative, yet invariant, features for texture classification. Texture variations due to changes in scale are amongst the hardest to handle. One of the most successful methods of dealing with such variations is based on choosing interest points and selecting their characteristic scales [Lazebnik et al. PAMI 2005].(More)
Our objective is to train p-norm Multiple Kernel Learning (MKL) and, more generally, linear MKL regularised by the Bregman divergence, using the Sequential Minimal Optimization (SMO) algorithm. The SMO algorithm is simple, easy to implement and adapt, and efficiently scales to large problems. As a result, it has gained widespread acceptance and SVMs are(More)