Manfredo Atzori

Learn More
This paper is about (self-powered) advanced hand prosthetics and their control via surface electromyography (sEMG). We hereby introduce to the biorobotics community the first version of the Ninapro database, containing kinematic and sEMG data from the upper limbs of 27 intact subjects while performing 52 finger, hand and wrist movements of interest. The(More)
Recent advances in rehabilitation robotics suggest that it may be possible for hand-amputated subjects to recover at least a significant part of the lost hand functionality. The control of robotic prosthetic hands using non-invasive techniques is still a challenge in real life: myoelectric prostheses give limited control capabilities, the control is often(More)
Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep(More)
In this paper, we characterize the Ninapro database and its use as a benchmark for hand prosthesis evaluation. The database is a publicly available resource that aims to support research on advanced myoelectric hand prostheses. The database is obtained by jointly recording surface electromyography signals from the forearm and kinematics of the hand and(More)
Numerous recent studies have aimed to improve myoelectric control of prostheses. However, the majority of these studies is characterized by two problems that could be easily fulfilled with recent resources supplied by the scientific literature. First, the majority of these studies use only intact subjects, with the unproved assumption that the results apply(More)
Trans-radially amputated persons who own a my-olectric prosthesis have currently some control via surface elec-tromyography (sEMG). However, the control systems are still limited (as they include very few movements) and not always natural (as the subject has to learn to associate movements of the muscles with the movements of the prosthesis). The Ninapro(More)
There has been increasing interest in applying learning algorithms to improve the dexterity of myoelectric prostheses. In this work, we present a large-scale benchmark evaluation on the second iteration of the publicly released NinaPro database, which contains surface electromyography data for 6 DOF force activations as well as for 40 discrete hand(More)
Medulloblastoma (MB) is a type of brain cancer that represent roughly 25% of all brain tumors in children. In the anaplastic medulloblastoma subtype, it is important to identify the degree of irregularity and lack of organizations of cells as this correlates to disease aggressiveness and is of clinical value when evaluating patient prognosis. This paper(More)
Hand amputation can dramatically affect the capabilities of a person. Cortical reorganization occurs in the brain, but the motor and somatosensorial cortex can interact with the remnant muscles of the missing hand even many years after the amputation, leading to the possibility to restore the capabilities of hand amputees through myoelectric prostheses.(More)
People with transradial hand amputations who own a myoelectric prosthesis currently have some control capabilities via sEMG. However, the control systems are still limited and not natural. The Ninapro project is aiming at helping the scientific community to overcome these limits through the creation of publicly available electromyography data sources to(More)