Learn More
In mast cells and granulocytes, exocytosis starts with the formation of a fusion pore. It has been suggested that neurotransmitters may be released through such a narrow pore without full fusion. However, owing to the small size of the secretory vesicles containing neurotransmitter, the properties of the fusion pore formed during Ca2+-dependent exocytosis(More)
The number of transmitter molecules released in a quantal event can be regulated, and recent studies suggest that the modulation of quantal size is associated with corresponding changes in vesicle volume (Colliver et al., 2000; Pothos et al., 2002). If so, this could occur either by distension of the vesicle membrane or by incorporation and removal of(More)
The roles of nonmuscle myosin II and cortical actin filaments in chromaffin granule exocytosis were studied by confocal fluorescence microscopy, amperometry, and cell-attached capacitance measurements. Fluorescence imaging indicated decreased mobility of granules near the plasma membrane following inhibition of myosin II function with blebbistatin. Slower(More)
We characterized the influence of conductance changes on whole-cell patch clamp capacitance measurements with a lock-in amplifier and the limitations of the phase-tracking method by numerical computer simulations, error formulas, and experimental tests. At correct phase setting, the artifacts in the capacitance measurement due to activation of linear(More)
We have investigated the ATP-induced permeabilization of rat peritoneal mast cells using three different techniques: (a) by measuring uptake of fluorescent membrane and DNA marker dyes, (b) by voltage-clamp measurements using the patch-clamp technique, and (c) by measurements of exocytosis in response to entry of Ca2+ and GTP gamma S into permeabilized(More)
Formation of a fusion pore between a vesicle and its target membrane is thought to involve the so-called SNARE protein complex. However, there is no mechanistic model explaining how the fusion pore is opened by conformational changes in the SNARE complex. It has been suggested that C-terminal zipping triggers fusion pore opening. A SNAP-25 mutant named(More)
SNAP-25 is a Q-SNARE protein mediating exocytosis of neurosecretory vesicles including chromaffin granules. Previous results with a SNAP-25 construct lacking the nine C terminal residues (SNAP-25Δ9) showed changed fusion pore properties (Fang et al., 2008), suggesting a model for fusion pore mechanics that couple C terminal zipping of the SNARE complex to(More)
In rat peritoneal mast cells, we have investigated the influence of the chloride transport blocker 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS) and the extracellular chloride concentration on the chloride current induced by intracellular application of cyclic AMP (cAMP) and on hexosaminidase secretion from intact cells stimulated with compound(More)
We have investigated the temporal relationship between depolarization, elevation of [Ca2+]i and exocytosis in single vertebrate neuroendocrine nerve terminals. The change of [Ca2+]i and vasopressin release were measured with a time resolution of less than 1 s in response to K(+)-induced depolarization. Exocytosis was also monitored in the whole-terminal(More)
An increase in free Ca2+ triggers exocytosis in pituitary nerve terminals leading to an increase in membrane area and membrane capacitance. When Ca2+ is increased by step depolarization, an instantaneous capacitance increase during the first 80 ms is followed by a slow increase extending over several seconds. We measured capacitance changes associated with(More)