Learn More
Despite the recent achievements in stable dynamic walking for many humanoid robots, relatively little navigation autonomy has been achieved. In particular, the ability to autonomously select foot placement positions to avoid obstacles while walking is an important step towards improved navigation autonomy for humanoids. We present a footstep planner for the(More)
This paper explores a behavior planning approach to automatically generate realistic motions for animated characters. Motion clips are abstracted as high-level behaviors and associated with a behavior finite-state machine (FSM) that defines the movement capabilities of a virtual character. During runtime, motion is generated automatically by a planning(More)
We present a novel approach for interactively synthesizing motions for characters navigating in complex environments. We focus on the runtime efficiency for motion generation, thereby enabling the interactive animation of a large number of characters simultaneously. The key idea is to precompute search trees of motion clips that can be applied to arbitrary(More)
We present a novel method to model and synthesize variation in motion data. Given a few examples of a particular type of motion as input, we learn a generative model that is able to synthesize a family of spatial and temporal variants that are statistically similar to the input examples. The new variants retain the features of the original examples, but are(More)
<i>SketchChair</i> is an application that allows novice users to control the entire process of designing and building their own chairs. Chairs are designed using a simple 2D sketch-based interface and design validation tools, and are then fabricated from sheet materials, cut by a laser cutter or CNC milling machine. This paper presents the concepts and(More)
Although there is an abundance of 3D models available, most of them exist only in virtual simulation and are not immediately usable as physical objects in the real world. We solve the problem of taking as input a 3D model of a man-made object, and automatically generating the parts and connectors needed to build the corresponding physical object. We focus(More)
Personal fabrication machines, such as 3D printers and laser cutters, are becoming increasingly ubiquitous. However, designing objects for fabrication still requires 3D modeling skills, thereby rendering such technologies inaccessible to a wide user-group. In this paper, we introduce MixFab, a mixed-reality environment for personal fabrication that lowers(More)
This article presents an intuitive and easy-to-use system for interactively posing 3D facial expressions. The user can model and edit facial expressions by drawing freeform strokes, by specifying distances between facial points, by incrementally editing curves on the face, or by directly dragging facial points in 2D screen space. Designing such an interface(More)
In this paper, we present an intuitive interface for interactively posing 3D facial expressions. The user can create and edit facial expressions by drawing freeform strokes, or by directly dragging facial points in 2D screen space. Designing such an interface for face modeling and editing is challenging because many unnatural facial expressions might be(More)
This paper explores the problem of designing enclosures (or physical cases) that are needed for prototyping electronic devices. We present a novel interface that uses electronic components as handles for designing the 3D shape of the enclosure. We use the .NET Gadgeteer platform as a case study of this problem, and implemented a proof-of-concept system for(More)