Learn More
The HOM-C/Hox complexes are an evolutionary related family of genes that have been shown to direct region-specific development of the animal body plan. We examined in transgenic mice the DNA regulatory elements that determine the temporal and spatially restricted expression of two of the earliest and most anteriorly expressed murine genes, Hoxa-1 and(More)
The secreted protein Jelly belly (Jeb) is required for an essential signalling event in Drosophila muscle development. In the absence of functional Jeb, visceral muscle precursors are normally specified but fail to migrate and differentiate. The structure and distribution of Jeb protein implies that Jeb functions as a signal to organize the development of(More)
The Drosophila gene tinman is essential for dorsal vessel (heart) formation and is structurally and functionally conserved in vertebrates. In the mature embryonic dorsal vessel, tinman is expressed in four of the six pairs of cardioblasts in each segment. We provide evidence that seven-up, which is homologous to the vertebrate COUP-TF transcription factor(More)
The dorsal-ventral patterning of the Drosophila embryo is controlled by a well-defined gene regulation network. We wish to understand how changes in this network produce evolutionary diversity in insect gastrulation. The present study focuses on the dorsal ectoderm in two highly divergent dipterans, the fruitfly Drosophila melanogaster and the mosquito(More)
Various members of the TGF-beta superfamily of signaling molecules are known to have important roles in mesoderm patterning and differentiation during vertebrate and invertebrate embryogenesis. Here we characterize a new TGF-beta member from Drosophila, Myoglianin, that is most closely related to the vertebrate muscle differentiation factor Myostatin and to(More)
Three homeobox genes, one from Drosophila melanogaster (Drosophila Hmx gene) and two from mouse (murine Hmx2 and Hmx3) were isolated and the full-length cDNAs and corresponding genomic structures were characterized. The striking homeodomain similarity encoded by these three genes to previously identified genes in sea urchin, chick and human, as well as the(More)
The homoeobox gene zerknüllt (zen) plays an important role in the differentiation of dorsal tissues during Drosophila development. zen- embryos show transformations in the dorsal-most regions of the fate map, and lack several tissues that normally derive from these regions, including the amnioserosa and optic lobe. zen displays a simple dorsal on/ventral(More)
We report that the Drosophila mind bomb2 (mib2) gene is a novel regulator of muscle development. Unlike its paralogue, mib1, zygotic expression of mib2 is restricted to somatic and visceral muscle progenitors, and their respective differentiated musculatures. We demonstrate that in embryos that lack functional Mib2, muscle detachment is observed beginning(More)
In Drosophila, the visceral mesoderm giving rise to gut musculature is specified by the bagpipe homeobox gene. We have isolated, from both mouse and human, homologues of the bagpipe gene designated Bapx1 and BAPX1, respectively. Bapx1 encodes a predicted protein of 333 amino acids, and has significant regions of homology outside the homeodomain with members(More)
Many of the mechanisms that govern the patterning of the Drosophila neuroectoderm and mesoderm are still unknown. Here we report the sequence, expression, and regulation of the homeobox gene msh, which is likely to play an important role in the early patterning events of these two tissue primordia. msh expression is first observed in late blastoderm embryos(More)