Mancheng C Tang

Learn More
Azinomycin B is a complex natural product containing densely assembled functionalities with potent antitumor activity. Cloning and sequence analysis of the azi gene cluster revealed an iterative type I polyketide synthase (PKS) gene, five nonribosomal peptide synthetases (NRPSs) genes and numerous genes encoding the biosynthesis of unusual building blocks(More)
Azinomycin B is a potent antitumor antibiotic that features a set of unusual, densely assembled functionalities. Among them, the 3-methoxy-5-methylnaphthoic acid (NPA) moiety provides an important noncovalent association with DNA, and may, therefore, contribute to the specificity of DNA alkylation for biological activity exhibition. We have previously(More)
Epoxides are highly useful synthons and biosynthons for the construction of complex natural products during total synthesis and biosynthesis, respectively. Among enzyme-catalyzed epoxide transformations, a reaction that is notably missing, in regard to the synthetic toolbox, is cationic rearrangement that takes place under strong acid. This is a challenging(More)
Azinomycin B is a potent antitumor antibiotic that features a set of unusual, densely assembled functionalities. Among them, the 3-methoxy-5-methylnaphthoic acid (NPA) moiety provides an important noncovalent association with DNA, and may, therefore, contribute to the specificity of DNA alkylation for biological activity exhibition. We have previously(More)
Redox modifications are key complexity-generating steps in the biosynthesis of natural products. The unique structure of rubratoxin A (1), many of which arise through redox modifications, make it a nanomolar inhibitor of protein phosphatase 2A (PP2A). We identified the biosynthetic pathway of 1 and completely mapped the enzymatic sequence of redox reactions(More)
Modification of natural products with prenyl groups and the ensuing oxidative transformations are important for introducing structural complexity and biological activities. Penigequinolones (1) are potent insecticidal alkaloids that contain a highly modified 10-carbon prenyl group. Here we reveal an iterative prenylation mechanism for installing the(More)
Biochemical studies of purified and dissected fungal polyketide synthase and nonribosomal peptide synthetase (PKS-NRPS) hybrid enzymes involved in biosynthesis of pseurotin and aspyridone indicate that one α-methylation step during polyketide synthesis is a prerequisite and a key checkpoint for chain transfer between PKS and NRPS modules. In the absence of(More)
  • 1