Manan Chopra

Learn More
A Monte Carlo simulation method is presented for simulation of phase transitions, with emphasis on the study of crystallization. The method relies on a random walk in order parameter Phi(q(N)) space to calculate a free energy profile between the two coexisting phases. The energy and volume data generated over the course of the simulation are subsequently(More)
Amyloid deposits of amylin in the pancreas are an important characteristic feature found in patients with Type-2 diabetes. The aggregate has been considered important in the disease pathology and has been studied extensively. However, the secondary structures of the individual peptide have not been clearly identified. In this work, we present detailed(More)
Long polyglutamine chains have been associated with a number of neurodegenerative diseases. These include Huntington's disease, where expanded polyglutamine (PolyQ) sequences longer than 36 residues are correlated with the onset of symptoms. In this paper we study the folding pathway of a 54-residue PolyQ chain into a beta-helical structure. Transition path(More)
We have studied the efficiency of parallel tempering simulations for a variety of systems including a coarse-grained protein, an atomistic model polypeptide, and the Lennard-Jones fluid. A scheme is proposed for the optimal allocation of temperatures in these simulations. The method is compared to the existing empirical approaches used for this purpose.(More)
One of the central problems in statistical mechanics is that of finding the density of states of a system. Knowledge of the density of states of a system is equivalent to knowledge of its fundamental equation, from which all thermodynamic quantities can be obtained. Over the past several years molecular simulations have made considerable strides in their(More)
Protein aggregation has been implicated in the pathology of several neurodegenerative diseases, and a better understanding of how it proceeds is essential for the development of therapeutic strategies. Recently, the amyloidogenic heptapeptide GNNQQNY has emerged as a molecule of choice for fundamental studies of protein aggregation. A number of experimental(More)
The translocation of large DNA molecules through narrow pores has been examined in the context of multiscale simulations that include a full coupling of fluctuating hydrodynamic interactions, boundary effects, and molecular conformation. The actual rate constants for this process are determined for the first time, and it is shown that hydrodynamic(More)
In this paper a new algorithm is presented that improves the efficiency of Wang and Landau algorithm or density of states (DOS) Monte Carlo simulations by employing rejected states. The algorithm is shown to have a performance superior to that of the original Wang-Landau [F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001)] algorithm and the more(More)
The free energy surfaces of a wide variety of systems encountered in physics, chemistry, and biology are characterized by the existence of deep minima separated by numerous barriers. One of the central aims of recent research in computational chemistry and physics has been to determine how transitions occur between deep local minima on rugged free energy(More)
Recent experiments have shown that liquid crystals can be used to image mammalian cell membranes and to amplify structural reorganization in phospholipid-laden liquid crystal-aqueous interfaces. In this work, molecular dynamics simulations were employed to explore the interactions between commonly used liquid crystal-forming molecules and phospholipid(More)