Learn More
This paper proposes to incorporate full covariance matrices into the radial basis function (RBF) networks and to use the expectation-maximization (EM) algorithm to estimate the basis function parameters. The resulting networks, referred to as elliptical basis function (EBF) networks, are evaluated through a series of text-independent speaker verification(More)
Probabilistic Decision-Based Neural Networks (PDBNNs) can be considered as a special form of Gaussian Mixture Models (GMMs) with trainable decision thresholds. This paper provides detailed illustrations to compare the recognition accuracy and decision boundaries of PDBNNs with that of GMMs through two pattern recognition tasks, namely the noisy XOR problem(More)
Although many computational methods have been developed to predict protein subcellular localization, most of the methods are limited to the prediction of single-location proteins. Multi-location proteins are either not considered or assumed not existing. However, proteins with multiple locations are particularly interesting because they may have special(More)
This paper reviews diierent approaches to improving the real time recurrent learning (RTRL) algorithm and attempts to group them into common frameworks. The characteristics of sub-grouping strategy, mode exchange RTRL, and cellular genetic algorithms are discussed. The relationships between these algorithms are highlighted and their time complexities and(More)
Recent research has demonstrated the merit of combining Gaussian mixture models and support-vector-machine (SVM) for text-independent speaker verification. However, one unaddressed issue in this GMM–SVM approach is the imbalance between the numbers of speaker-class utterances and impostor-class utterances available for training a speaker-dependent SVM. This(More)
We apply the ETSI’s DSR standard to speaker verification over telephone networks and investigate the effect of extracting spectral features from different stages of the ETSI’s front-end on speaker verification performance. We also evaluate two approaches to creating speaker models, namely maximum likelihood (ML) and maximum a posteriori (MAP), in the(More)
This paper studies the use of profile alignment and support vector machines for subcellular localization. In the training phase, the profiles of all protein sequences in the training set are constructed by PSI-BLAST and the pairwise profile-alignment scores are used to form feature vectors for training a support vector machine (SVM) classifier. During(More)
The subcellular locations of proteins are important functional annotations. An effective and reliable subcellular localization method is necessary for proteomics research. This paper introduces a new method---PairProSVM---to automatically predict the subcellular locations of proteins. The profiles of all protein sequences in the training set are constructed(More)
Prediction of protein subcellular localization is an important yet challenging problem. Recently, several computational methods based on Gene Ontology (GO) have been proposed to tackle this problem and have demonstrated superiority over methods based on other features. Existing GO-based methods, however, do not fully use the GO information. This paper(More)
Since 2008, interview-style speech has become an important part of the NIST Speaker Recognition Evaluations (SREs). Unlike telephone speech, interview speech has lower signal-to-noise ratio, which necessitates robust voice activity detectors (VADs). This paper highlights the characteristics of interview speech files in NIST SREs and discusses the(More)