Learn More
BAK1 is a leucine-rich repeat receptor-like kinase that functions as a coreceptor with the brassinosteroid (BR) receptor BRI1 and the flagellin receptor FLS2, and as a negative regulator of programmed cell death. BAK1 has been shown to autophosphorylate on numerous serine/threonine sites in vitro as well as to transphosphorylate associated receptor kinases(More)
Brassinosteroids (BRs) are essential growth-promoting hormones that regulate many aspects of plant growth and development. Two leucine-rich repeat receptor-like kinases (LRR-RLKs) are involved in BR perception and signal transduction: brassinosteroid insensitive 1 (BRI1), which is the BR receptor, and its coreceptor BRI1-associated kinase 1 (BAK1). Both(More)
The soybean (Glycine max) genome contains 18 members of the 14-3-3 protein family, but little is known about their association with specific phenotypes. Here, we report that the Glyma0529080 Soybean G-box Factor 14-3-3c (SGF14c) and Glyma08g12220 (SGF14l) genes, encoding 14-3-3 proteins, appear to play essential roles in soybean nodulation. Quantitative(More)
The activity of the dual-specificity receptor kinase, brassinosteroid insensitive 1 (BRI1), reflects the balance between phosphorylation-dependent activation and several potential mechanisms for deactivation of the receptor. In the present report, we elucidate a unique mechanism for deactivation that involves autophosphorylation of serine-891 in the(More)
Lysine acetylation (LysAc), a form of reversible protein posttranslational modification previously known only for histone regulation in plants, is shown to be widespread in Arabidopsis (Arabidopsis thaliana). Sixty-four Lys modification sites were identified on 57 proteins, which operate in a wide variety of pathways/processes and are located in various(More)
Transgenic plants overexpressing AXR3/IAA17 were impaired in root growth. Specifically, they exhibited severe defects in lateral root and root hair development similar to the root phenotypes of epi-brassinolide (epiBL)-treated wild-type plants. Here, we investigated the involvement of AXR3/IAA17 gene expression in brassinosteroid (BR)-regulated root(More)
The mechanisms involved in sensing oxidative signalling molecules, such as H2O2, in plant and animal cells are not completely understood. In the present study, we tested the postulate that oxidation of Met (methionine) to MetSO (Met sulfoxide) can couple oxidative signals to changes in protein phosphorylation. We demonstrate that when a Met residue(More)
In metazoans, receptor kinases control many essential processes related to growth and development and response to the environment. The receptor kinases in plants and animals are structurally similar but evolutionarily distinct and thus while most animal receptor kinases are tyrosine kinases the plant receptor kinases are classified as serine/threonine(More)
Among several receptor-like kinases (RLKs), leucine-rich-repeat receptor-like kinases (LRR-RLKs) are a major group of genes that play crucial roles in growth, development and stress responses in plant systems. Given that they have several functional roles, it is important to investigate their roles in Brassica rapa. In the present study, 303 LRR-RLKs were(More)
Brassinosteroids promote soybean epicotyl elongation and regulate expression of BRU1, a gene with homology to xyloglucan endotransglycosylases (XETs). Recombinant BRU1 protein possesses XET activity and in situ hybridiza-tion reveals highest BRUl transcript accumulation in inner epicotyl tissue, particularly the phloem and paratracheary parenchyma cells.(More)