Man-Fai Ng

Learn More
PURPOSE To assess the role of intracavitary mold brachytherapy in salvaging local failure of nasopharyngeal carcinoma (NPC). METHODS AND MATERIALS The outcomes of 118 consecutive NPC patients with local failure treated with mold brachytherapy between 1989 and 1996 were retrospectively reviewed. Eleven patients received additional external radiotherapy. (More)
The current-voltage (I-V) characteristics of small-diameter hydrogenated and pristine silicon nanowires (SiNWs) are calculated by nonequilibrium Green's function combined with density functional theory. We show that the I-V characteristics depend strongly on length, growth orientation, and surface modification of the SiNWs. In particular, a length of 3 nm(More)
On the basis of abounding density function calculations, a mechanism is proposed to explain single-walled carbon nanotube (SWCNT) growth and chirality selection induced by single C atom and C(2) dimer addition under catalyst-free conditions. Two competitive reaction paths, chirality change induced by single C atom and nanotube growth through C(2) dimer(More)
The ballistic regime gives the upper limit of an electron device performance. This paper proposes a fast and efficient model for calculating the current–voltage characteristic of a cylindrical nanowire within the framework of the non-equilibrium Green's function. Under certain assumptions, the calculation is simplified to a one-dimensional problem and the(More)
We present a systematic theoretical study on the mechanism of half-metallicity and ferromagnetism for one-dimensional (1-D) sandwich molecular wires (SMWs) constructed with altering cyclopentadienyl (Cp) and first-row transition metal (Mt). It is unveiled for the first time that, in (MtCp) infinity, one valence electron would transfer from the Mt to the Cp(More)
Even though metal-organic frameworks (MOFs) derived from antiferromagnetic dimeric-Cu(II) building units and nonmagnetic molecular linkers are known to exhibit unexpected ferromagnetic behavior, a comprehensive understanding of the underlying mechanism remains elusive. Using a combined theoretical and experimental approach, here we reveal the origin of the(More)
The excited state properties of linear, planar, and spherical hydrogenated silicon nanostructures are studied systematically with use of a time-dependent Hartree-Fock (TDHF) approach with a semiempirical Hamiltonian. The calculated optical gaps decrease significantly from linear, planar, to spherical silicon structures, showing that the optical gap is(More)
First-principles density functional theory calculations on hydrogenated silicon nanowires (SiNWs) with diameters up to 7.3 nm are carried out for comparing to experimentally relevant SiNWs and evaluating its radial doping profiles. We show that the direct band gap nature of both the small diameter (110) and (100) SiNWs fades when the diameter reaches beyond(More)
The mechanism(s) of interactions of phenol with oxygenated functional groups (OH, COO and COOH) in nanopores of activated carbon (AC) is a contentious issue among researchers. This mechanism is of particular interest because a better understanding of the role of such groups in nanopores would essentially translate to advances in AC production and use,(More)
Despite decades of concerted experimental studies dedicated to providing fundamental insights into the adsorption of aurocyanide ion, Au(CN)2(-), on activated carbon (AC) surface, such a mechanism is still poorly understood and remains a contentious issue. This adsorption process is an essential unit operation for extracting gold from ores using(More)