Mamoru Yamanishi

Learn More
Cystathionine beta-synthase plays a key role in the intracellular disposal of homocysteine and is the single most common locus of mutations associated with homocystinuria. Elevated levels of homocysteine are correlated with heart disease, Alzheimer's and Parkinson's diseases, and neural tube defects. Cystathionine beta-synthase is modular and subjected to(More)
The crystal structures of ADP bound and nucleotide-free forms of molecular chaperone-like diol dehydratase-reactivating factor (DDR) were determined at 2.0 and 3.0 A, respectively. DDR exists as a dimer of heterodimer (alphabeta)2. The alpha subunit has four domains: ATPase domain, swiveling domain, linker domain, and insert domain. The beta subunit,(More)
Recombinant glycerol dehydratase of Klebsiella pneumoniae was purified to homogeneity. The subunit composition of the enzyme was most probably alpha 2 beta 2 gamma 2. When (R)- and (S)-propane-1,2-diols were used independently as substrates, the rate with the (R)-enantiomer was 2.5 times faster than that with the (S)-isomer. In contrast to diol dehydratase,(More)
Many organic cofactors are both rare and reactive. They are usually in low abundance, which poses problems for efficient collision-based targeting to dependent enzymes, whereas their reactivity is problematic for side reactions. Sequestration and escorted delivery presents one solution to this conundrum, but such porters, if they exist, are mostly unknown.(More)
Human cystathionine beta-synthase plays a key role in maintaining low intracellular levels of homocysteine and is unique in being a pyridoxal phosphate-dependent enzyme that is a hemeprotein. It catalyzes the beta-replacement of serine and homocysteine to generate the condensation product, cystathionine. While the structure of a truncated catalytic core of(More)
The human adenosyltransferase hATR converts exogenous cobalamin into coenzyme B12 by transferring the adenosyl group from cosubstrate ATP to a transiently formed Co1+cobalamin (Co1+Cbl) species. A particularly puzzling aspect of hATR function is that the midpoint potential for Co2+Cbl --> Co1+Cbl reduction is below that of readily available biological(More)
The reactions of diol dehydratase with 3-unsaturated 1,2-diols and thioglycerol were investigated. Holodiol dehydratase underwent rapid and irreversible inactivation by either 3-butene-1,2-diol, 3-butyne-1,2-diol or thioglycerol without catalytic turnovers. In the inactivation, the Co-C bond of adenosylcobalamin underwent irreversible cleavage forming(More)
Adenosylcobalamin-dependent diol dehydratase of Klebsiella oxytoca is apparently not stereospecific and catalyzes the conversion of both (R)- and (S)-1,2-propanediol to propionaldehyde. To explain this unusual property of the enzyme, we analyzed the crystal structures of diol dehydratase in complexes with cyanocobalamin and (R)- or (S)-1,2-propanediol. (R)-(More)
Human adenosyltransferase synthesizes coenzyme B12, for the target mitochondrial B12 enzyme, methylmalonyl-CoA mutase. It binds B12 in the "base-off" conformation in both the Co2+ and Co3+ oxidation states as revealed by UV-visible and EPR spectroscopy although it lacks the signature DXHXXG motif found in other B12 proteins that bind the cofactor in this(More)
Coenzyme B(12) dependent diol dehydratase undergoes mechanism-based inactivation by glycerol, accompanying the irreversible cleavage of the coenzyme Co-C bond. Bachovchin et al. [Biochemistry16, 1082-1092 (1977)] reported that glycerol bound in the G(S) conformation, in which the pro-S-CH(2) OH group is oriented to the hydrogen-abstracting site, primarily(More)