Mamoru Nagano

Learn More
Mammalian circadian clocks consist of complex integrated feedback loops that cannot be elucidated without comprehensive measurement of system dynamics and determination of network structures. To dissect such a complicated system, we took a systems-biological approach based on genomic, molecular and cell biological techniques. We profiled suprachiasmatic(More)
The suprachiasmatic nucleus (SCN) is the neuroanatomical locus of the mammalian circadian pacemaker. Here we demonstrate that an abrupt shift in the light/dark (LD) cycle disrupts the synchronous oscillation of circadian components in the rat SCN. The phases of the RNA cycles of the period genes Per1 and Per2 and the cryptochrome gene Cry1 shifted rapidly(More)
Living organisms detect seasonal changes in day length (photoperiod) [1-3] and alter their physiological functions accordingly to fit seasonal environmental changes. TSHβ, induced in the pars tuberalis (PT), plays a key role in the pathway that regulates vertebrate photoperiodism [4, 5]. However, the upstream inducers of TSHβ expression remain unknown. Here(More)
The suprachiasmatic nucleus (SCN) is the master circadian clock that regulates physiological and behavioral circadian rhythms in mammals. Prokineticin 2 (PK2) is highly expressed in the SCN, and its involvement in the generation of circadian locomotor activity has been reported previously. In the present study, using in situ hybridization methods, we(More)
Mammalian circadian clocks consist of regulatory loops mediated by Clock/Bmal1-binding elements, DBP/E4BP4 binding elements, and RevErbA/ROR binding elements. As a step toward system-level understanding of the dynamic transcriptional regulation of the oscillator, we constructed and used a mammalian promoter/enhancer database (http://promoter.cdb.riken.jp/)(More)
Singularity behaviour in circadian clocks--the loss of robust circadian rhythms following exposure to a stimulus such as a pulse of bright light--is one of the fundamental but mysterious properties of clocks. To quantitatively perturb and accurately measure the dynamics of cellular clocks, we synthetically produced photo-responsiveness within mammalian(More)
The mammalian molecular clock is composed of feedback loops to keep circadian 24-h rhythms. Although much focus has been on transcriptional regulation, it is clear that posttranscriptional controls also play important roles in molecular circadian clocks. In this study, we found that mouse LARK (mLARK), an RNA binding protein, activates the(More)
Vasoactive intestinal peptide (VIP) neurons constitute a large group in the suprachiasmatic nucleus (SCN) and it is thought that they are involved in the generation and entrainment of circadian rhythm. We have characterized these VIP-expressing neurons in rat SCN by their ability to induce the mammalian Period1 (Per1) gene in response to light exposure,(More)
The suprachiasmatic nucleus is the master circadian clock and resets the peripheral clocks via various pathways. Glucocorticoids and daily feeding are major time cues for entraining most peripheral clocks. However, recent studies have suggested that the dominant timing factor differs among organs and tissues. In our current study, we reveal differences in(More)
The adult mammalian brain is composed of distinct regions with specialized roles including regulation of circadian clocks, feeding, sleep/awake, and seasonal rhythms. To find quantitative differences of expression among such various brain regions, we conducted the BrainStars (B*) project, in which we profiled the genome-wide expression of ∼50 small brain(More)