Learn More
An industrial microorganism, Streptomyces avermitilis, which is a producer of anthelmintic macrocyclic lactones, avermectins, has been constructed as a versatile model host for heterologous expression of genes encoding secondary metabolite biosynthesis. Twenty of the entire biosynthetic gene clusters for secondary metabolites were successively cloned and(More)
To construct a versatile model host for heterologous expression of genes encoding secondary metabolite biosynthesis, the genome of the industrial microorganism Streptomyces avermitilis was systematically deleted to remove nonessential genes. A region of more than 1.4 Mb was deleted stepwise from the 9.02-Mb S. avermitilis linear chromosome to generate a(More)
Pentalenic acid (1) has been isolated from many Streptomyces sp. as a co-metabolite of the sesquiterpenoid antibiotic pentalenolactone and related natural products. We have previously reported the identification of a 13.4-kb gene cluster in the genome of Streptomyces avermitilis implicated in the biosynthesis of the pentalenolactone family of metabolites(More)
Certain streptomycin resistance mutations (i.e., rpsL and rsmG) result in the overproduction of antibiotics in various actinomycetes. Moreover, rpsL rsmG double-mutant strains show a further increase in antibiotic production. rpsL but not rsmG mutations result in a marked enhancement of oligomycin production in Streptomyces avermitilis and erythromycin(More)
To identify the genes for biosynthesis of the off-flavor terpenoid alcohol, 2-methylisoborneol (2-MIB), the key genes encoding monoterpene cyclase were located in bacterial genome databases by using a combination of hidden Markov models, protein-family search, and the sequence alignment of their gene products. Predicted terpene cyclases were classified into(More)
Actinophage TG1 forms stable lysogens by integrating at a unique site on chromosomes of Streptomyces strains. The phage (attP(TG1)) and bacterial (attB(TG1)) attachment sites for TG1 were deduced from comparative genomic studies on the TG1-lysogen and nonlysogen of Streptomyces avermitilis. The attB(TG1) was located within the 46-bp region in the dapC gene(More)
The γ-butyrolactone autoregulator receptor has been shown to control secondary metabolism and/or morphological differentiation across many Streptomyces species. Streptomyces avermitilis produces an important anthelmintic agent (avermectin) and two further polyketide antibiotics, filipin and oligomycin. Genomic analysis of S. avermitilis revealed that this(More)
Odoriferous terpene metabolites of bacterial origin have been known for many years. In genome-sequenced Streptomycetaceae microorganisms, the vast majority produces the degraded sesquiterpene alcohol geosmin. Two minor groups of bacteria do not produce geosmin, with one of these groups instead producing other sesquiterpene alcohols, whereas members of the(More)
The γ-butyrolactone autoregulator signaling cascades have been shown to control secondary metabolism and/or morphological development among many Streptomyces species. However, the conservation and variation of the regulatory systems among actinomycetes remain to be clarified. The genome sequence of Kitasatospora setae, which also belongs to the family(More)
The terpene synthase encoded by the sav76 gene of Streptomyces avermtilis was expressed in Escherichia coli as an N-terminal-His(6)-tag protein, using a codon-optimized synthetic gene. Incubation of the recombinant protein, SAV_76, with farnesyl diphosphate (1, FPP) in the presence of Mg(2+) gave a new sesquiterpene alcohol avermitilol (2), whose structure(More)