Mami Nakahara

Learn More
NOD-H2(h4) mice, which express I-A(k) on the NOD background, spontaneously develop autoimmune thyroiditis, a model of Hashimoto thyroiditis in humans, by adding iodide in the drinking water. Parental NOD mice have previously been shown to have intrinsic numerical abnormalities in peripheral lymphocytes and lymphocyte subpopulations such as CD4(+)CD25(+)(More)
Graves' disease is a thyroid-specific autoimmune disease mediated by stimulatory autoantibodies against the TSH receptor (TSHR). We have previously shown in our mouse model with adenovirus expressing the TSHR that antibody mediated depletion of CD4(+)CD25(+) regulatory T cells (Tregs) enhances incidence and severity of hyperthyroidism in resistant and(More)
Graves-like hyperthyroidism is induced in BALB/c mice by immunization with adenovirus expressing the human TSH receptor (TSHR) A-subunit (amino acids 1-289). However, because of nonidentity between the human and mouse TSHR ( approximately 87% amino acid homology), we compared the responses of mice immunized with adenoviruses expressing either the mouse or(More)
The mutant BRAF (BRAF(V600E)) is the most common genetic alteration in papillary thyroid carcinomas (PTCs). The oncogenicity of this mutation has been shown by some genetically engineered mouse models. However, in these mice, BRAF(V600E) is expressed in all the thyroid cells from the fetal periods, and suppresses thyroid function, thereby leading to TSH(More)
Insulin peptide B:9-23 is a major autoantigen in type 1 diabetes. Combined treatment with B:9-23 peptide and polyinosinic-polycytidylic acid (poly I:C), but neither alone, induce insulitis in normal BALB/c mice. In contrast, the combined treatment accelerated insulitis, but prevented diabetes in NOD mice. Our immunofluorescence study with(More)
One approach to prevent tissue destruction by autoimmune attack in organ-specific autoimmune diseases is to protect the target tissue from autoimmune reaction, regardless of its persistent activity. To provide proof-of-principle for the feasibility of this approach, the immunoregulatory molecules, TNF-related apoptosis-inducing ligand (TRAIL) and(More)
The nonobese diabetic (NOD) mouse spontaneously develops several autoimmune diseases, including type 1 diabetes and to a lesser extent thyroiditis and sialitis. Imbalance between effector T cells (Teffs) and regulatory T cells (Tregs) has recently been proposed as a mechanism for the disease pathogenesis in NOD mice, but previous studies have shown the(More)
We have recently shown that wild type mice are highly tolerant, whereas thyrotropin receptor (TSHR) knockout (KO) mice are susceptible to immunization with the mouse TSHR, the autoantigen in Graves' disease. However, because TSHR KO mice lack the endogenous TSHR, Graves-like hyperthyroidism cannot be expected to occur in these mice. We therefore performed(More)
PURPOSE OF REVIEW The purpose of this article is to summarize the recent advances on experimental Graves' hyperthyroidism and orbitopathy as studied in two widely used mouse models, which involve repetitive genetic vaccinations using either adenovirus or in-vivo electroporation of the eukaryotic expression plasmid expressing the thyrotropin receptor (TSHR)(More)