Learn More
The pond snail Lymnaea stagnalis can often be observed moving upside down on its back just below the surface of the water. We have termed this form of movement "upside-down gliding." To elucidate the mechanism of this locomotion, we performed a series of experiments involving behavioral analyses and microscopic observations. These experiments were designed(More)
Piperacillin (PIPC) is a broad-spectrum penicil-lin1} and has been one of the most useful /Mactam antibiotics over the past 10 years. An active me-tabolite of PIPC previously reported is a ring-opening product at 2,3-dioxopiperazine moiety (T-1220A) in rat2), but there is no report on active metabolites in human. In the course of clinical study for the(More)
Reaction cross sections (sigma(R)) for 19C, 20C and the drip-line nucleus 22C on a liquid hydrogen target have been measured at around 40A MeV by a transmission method. A large enhancement of sigma(R) for 22C compared to those for neighboring C isotopes was observed. Using a finite-range Glauber calculation under an optical-limit approximation the rms(More)
The pond snail, Lymnaea stagnalis, can locomote on its back utilizing the surface tension of the water. We have called this form of movement 'back-swimming'. In order to perform this behavior, the snail must flip itself over on its back so that its foot is visible from above. Little is known about the mechanism of this back-swimming. As a first step for the(More)
The pond snail Lymnaea stagnalis moves along the sides and bottom of an aquarium, but it can also glide upside down on its back below the water's surface. We have termed these two forms of locomotion "standard locomotion" and "upside-down gliding," respectively. Previous studies showed that standard locomotion is produced by both cilia activity on the foot(More)
  • 1