Malte Schmick

Learn More
KRas is a major proto-oncogene product whose signaling activity depends on its level of enrichment on the plasma membrane (PM). This PM localization relies on posttranslational prenylation for membrane affinity, while PM specificity has been attributed to electrostatic interactions between negatively charged phospholipids in the PM and basic amino-acids in(More)
Our understanding of the plasma membrane, once viewed simply as a static barrier, has been revolutionized to encompass a complex, dynamic organelle that integrates the cell with its extracellular environment. Here, we discuss how bidirectional signaling across the plasma membrane is achieved by striking a delicate balance between restriction and propagation(More)
We present a cellular automaton model, including lateral inhibition of an autocatalytic morphogen, as well as a genetic switch that differentiates tissue into substrate-depleting vessels. This model yields isotropic morphogenesis, including: dichotomous and lateral branching, blind vessel ends, and closed loops due to anastosmosis. The algorithm consists of(More)
Cellular membranes are constantly reshaped by vesicular fission and fusion as well as by interactions with the dynamic cytoskeleton. Signaling activity at membranes depends on their geometric parameters, such as surface area and curvature; these affect local concentration and thereby regulate the potency of molecular reactions. A membrane's shape is thus(More)
Autocatalytic activation of epidermal growth factor receptor (EGFR) coupled to dephosphorylating activity of protein tyrosine phosphatases (PTPs) ensures robust yet diverse responses to extracellular stimuli. The inevitable tradeoff of this plasticity is spontaneous receptor activation and spurious signaling. We show that a ligand-mediated switch in EGFR(More)
Ras is a major intracellular signaling hub. This elevated position comes at a precarious cost: a single point mutation can cause aberrant signaling. The capacity of Ras for signaling is inextricably linked to its enrichment at the plasma membrane (PM). This PM localization is dynamically maintained by three essential elements: alteration of membrane(More)
We investigate experimentally a homogeneously driven granular medium. It consists of spheres, each one containing a magnetic dipole, rolling on a horizontally placed dish and subject to a magnetic field which is sinusoidal in time and spatially homogeneous. A gaslike state is obtained. Except for extremely low amplitudes of the magnetic field, non-Gaussian(More)
Molecular dynamic simulations of a medium consisting of disks in a periodically tilted box yield two dynamic modes differing considerably in the total potential and kinetic energies of the disks. Depending on parameters, these modes display the following features: (i) hysteresis (coexistence of the two modes in phase space); (ii) intermingledlike basins of(More)
A Duffing oscillator is driven by a sum of N chaotic time series. These time series are solutions of the undriven Duffing equation. It is shown that N=1 is sufficient to render the fluctuation theorem [Phys. Rev. Lett. 74, 2694 (1995)]; J. Math. Phys. 41, 4061 (2000)]; Adv. Phys. 51, 1529 (2002)]] for the power J(tau) averaged within intervals of length tau(More)
E-RAS is a member of the RAS family specifically expressed in embryonic stem cells, gastric tumors, and hepatic stellate cells. Unlike classical RAS isoforms (H-, N-, and K-RAS4B), E-RAS has, in addition to striking and remarkable sequence deviations, an extended 38-amino acid-long unique N-terminal region with still unknown functions. We investigated the(More)