Learn More
RATIONALE Activation of the coagulation cascade has been demonstrated in pulmonary fibrosis. In addition to its procoagulant function, various coagulation proteases exhibit cellular effects that may also contribute to fibrotic processes in the lung. OBJECTIVE To investigate the importance of protease-activated receptor (PAR)-2 and its activators,(More)
Vascular remodelling is a hallmark of pulmonary hypertension (PH) and is characterized by enhanced proliferation of pulmonary artery smooth muscle cells (PASMCs). Accumulating evidence indicates a crucial role of transcription factors in the vascular remodelling processes. Here, we characterize the involvement of meprin β, a novel activator protein-1 (AP-1)(More)
Cell surface-associated proteolysis plays a crucial role in the migration of mononuclear phagocytes to sites of inflammation. The glycolytic enzyme enolase-1 (ENO-1) binds plasminogen at the cell surface, enhancing local plasmin production. This study addressed the role played by ENO-1 in lipopolysaccharide (LPS)-driven chemokine-directed monocyte migration(More)
Increasing evidence indicates that disequilibrium of the alveolar oxidant-antioxidant balance may play a role in the pathogenesis of chronic fibrosing lung diseases. Excessive production of oxidants and a differential regulation of antioxidant enzymes have been described under these conditions. We characterized for the first time numerous nonenzymatic(More)
Extracellular nucleic acids play important roles in human immunity and hemostasis by inducing IFN production, entrapping pathogens in neutrophil extracellular traps, and providing procoagulant cofactor templates for induced contact activation during mammalian blood clotting. In this study, we investigated the functions of extracellular RNA and DNA in innate(More)
The receptor for advanced glycation end products (RAGE) is a transmembrane receptor of the Ig superfamily. While vascular RAGE expression is associated with kidney and liver fibrosis, high expression levels of RAGE are found under physiological conditions in the lung. In this study, RAGE expression in idiopathic pulmonary fibrosis was assessed, and the(More)
Prematurely born infants who require oxygen therapy often develop bronchopulmonary dysplasia (BPD), a debilitating disorder characterized by pronounced alveolar hypoplasia. Hyperoxic injury is believed to disrupt critical signaling pathways that direct lung development, causing BPD. We investigated the effects of normobaric hyperoxia on transforming growth(More)
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease for which no effective therapy exists to date. To identify the molecular mechanisms underlying IPF, we performed comparative proteome analysis of lung tissue from patients with sporadic IPF (n = 14) and human donor lungs (controls, n = 10) using two-dimensional gel electrophoresis and(More)
BACKGROUND Alterations to pulmonary surfactant composition have been encountered in the Acute Respiratory Distress Syndrome (ARDS). However, only few data are available regarding the time-course and duration of surfactant changes in ARDS patients, although this information may largely influence the optimum design of clinical trials addressing surfactant(More)
The potassium channel TWIK-related acid sensitive potassium (TASK)-1 channel, together with other potassium channels, controls the low resting tone of pulmonary arteries. The Src family tyrosine kinase (SrcTK) may control potassium channel function in human pulmonary artery smooth muscle cells (hPASMCs) in response to changes in oxygen tension and the(More)