Learn More
The ability of mother to provide nutrients and oxygen for her baby is a critical factor for fetal health and its survival. Failure in supplying the adequate amount of nutrients to meet fetal demand can lead to fetal malnutrition. The fetus responds and adapts to undernutrition but by doing so it permanently alters the structure and function of the body.(More)
BACKGROUND It is well established that low birth weight and accelerated postnatal growth increase the risk of liver dysfunction in later life. However, molecular mechanisms underlying such developmental programming are not well characterized, and potential intervention strategies are poorly defined. OBJECTIVES We tested the hypotheses that poor maternal(More)
BACKGROUND It is now widely accepted that the early-life nutritional environment is important in determining susceptibility to metabolic diseases. In particular, intra-uterine growth restriction followed by accelerated postnatal growth is associated with an increased risk of obesity, type-2 diabetes and other features of the metabolic syndrome. The(More)
This study investigates the effects of diet-induced changes in maternal body condition on glucose tolerance in sheep. Welsh Mountain ewes were established, by dietary manipulation, at a body condition score of 2 (lower body condition [LBCS], n = 17) or >3 (higher body condition [HBCS], n = 19) prior to and during pregnancy. Birth weight and postnatal growth(More)
AIMS/HYPOTHESIS Individuals with low birthweight are at increased risk of type 2 diabetes mellitus. However, the underlying molecular mechanisms are unknown. Previously we have shown that low birthweight is associated with changes in muscle insulin signalling proteins. Here we determined whether low birthweight is associated with changes in insulin(More)
Epidemiological studies have revealed a relationship between poor early growth and development of type 2 diabetes and other features of metabolic syndrome. The mechanistic basis of this relationship is not known. However, compelling evidence suggests that early environmental factors, including nutrition, play an important role. Studies of individuals in(More)
There is increasing concern about the rapidly rising incidence of obesity worldwide and its impact both on mortality, morbidity and the cost of healthcare. In the last 15 years, a large volume of research has linked low birth weight to many adult diseases in humans, such as Type II diabetes, cardiovascular disease, hypertension and the metabolic syndrome.(More)
We previously reported that maternal protein restriction in rodents influenced the rate of growth in early life and ultimately affected longevity. Low birth weight caused by maternal protein restriction followed by catch-up growth (recuperated animals) was associated with shortened lifespan whereas protein restriction and slow growth during lactation(More)
Low birth weight is associated with increased cardiovascular disease (CVD) in humans. Detrimental effects of low birth weight are amplified by rapid catch-up growth. Conversely, slow growth during lactation reduces CVD risk. Gestational protein restriction causes low birth weight, vascular dysfunction, and accelerated aging in rats. Atherosclerotic aortic(More)
BACKGROUND & AIMS Obesity induced, non-alcoholic fatty liver disease (NAFLD), is now the major cause in affluent countries, of the spectrum of steatosis-to-cirrhosis. Obesity and NAFLD rates in reproductive age women, and adolescents, are rising worldwide. Our hypothesis was that maternal obesity and lactation transmit to the offspring a pre-disposition to(More)