Malek Adouni

Learn More
Using a validated finite element model of the intact knee joint we aim to compute muscle forces and joint response in the stance phase of gait. The model is driven by reported in vivo kinematics-kinetics data and ground reaction forces in asymptomatic subjects. Cartilage layers and menisci are simulated as depth-dependent tissues with collagen fibril(More)
Osteoarthritis (OA) is the leading cause of pain and disability in the elderly with the knee being the most affected weight bearing joint. We used a musculoskeletal biomechanical model of the lower extremity including a detailed validated knee joint finite element model to compute lower extremity muscle forces and knee joint stresses-strains during the(More)
Effective management of knee joint disorders demands appropriate rehabilitation programs to restore function while strengthening muscles. Excessive stresses in cartilage/menisci and forces in ligaments should be avoided to not exacerbate joint condition after an injury or reconstruction. Using a validated 3D nonlinear finite element model, detailed(More)
Medial knee osteoarthritis is a debilitating disease. Surgical and conservative interventions are performed to manage its progression via reduction of load on the medial compartment or equivalently its surrogate measure, the external adduction moment. However, some studies have questioned a correlation between the medial load and adduction moment. Using a(More)
The role of the posterior tibial slope (PTS) in anterior cruciate ligament (ACL) risk of injury has been supported by many imaging studies but refuted by some in vitro works. The current investigation was carried out to compute the effect of ±5(o) change in PTS on knee joint biomechanics in general and ACL force/strain in particular. Two validated finite(More)
Knee joints are subject to large compression forces in daily activities. Due to artefact moments and instability under large compression loads, biomechanical studies impose additional constraints to circumvent the compression position-dependency in response. To quantify the effect of compression on passive knee moment resistance and stiffness, two validated(More)
Evaluation of contact forces-centers of the tibiofemoral joint in gait has crucial biomechanical and pathological consequences. It involves however difficulties and limitations in in vitro cadaver and in vivo imaging studies. The goal is to estimate total contact forces (CF) and location of contact centers (CC) on the medial and lateral plateaus using(More)
Accurate estimation of muscle forces during daily activities such as walking is critical for a reliable evaluation of loads on the knee joint. To evaluate knee joint muscle forces, the importance of the inclusion of the hip joint alongside the knee and ankle joints when treating the equilibrium equations remains yet unknown. An iterative kinematics-driven(More)
Anterior cruciate ligament (ACL) reconstructive surgeries, employing a total of 48 models, were conducted by virtually removing the ACL and then modeling the surgical preparation, tunnel architecture, graft pre-tensioning and fixation angle of a bone-patellar-tendon-bone autograft. Multifactorial sensitivity analyses were performed to assess the relative(More)
Musculoskeletal models of the lower extremity make a number of important assumptions when attempting to estimate muscle forces and tibiofemoral compartmental loads in activities such as gait. The knee is commonly idealized as a planar 2D joint in the sagittal plane with no consideration of motions and equilibrium in remaining planes. With muscle forces(More)