Learn More
1. Cyclical pressurization of cultured chondrocytes results in increases in cyclic AMP and in the rate of proteoglycan synthesis. Intermittent increases in hydrostatic pressure are also associated with hyperpolarization of chondrocyte cell membranes and activation of Ca(2+)-dependent K(+)-ion channels but the physiological basis for this response to(More)
Effects of applied hydrostatic pressure on transmembrane potentials were investigated in sheep articular chondrocytes and human skin fibroblasts in non-confluent monolayer cultures. Resting potentials in chondrocytes (about -12 mv) and in fibroblasts (about -15 mV) were increased and decreased respectively by over 40% after pressure was applied cyclically(More)
Bone cells respond to mechanical stimuli, but the transduction mechanisms responsible are not fully understood. Integrins, a family of heterodimeric transmembrane glycoproteins, which link components of the extracellular matrix with the actin cytoskeleton, have been implicated as mechanoreceptors. We have assessed the roles of integrins in the transduction(More)
Mechanical stimuli influence chondrocyte metabolism, inducing changes in intracellular cyclic adenosine monophosphate and proteoglycan production. We have previously demonstrated that primary monolayer cultures of human chondrocytes have an electrophysiological response after intermittent pressure-induced strain characterised by a membrane hyperpolarisation(More)
Mechanical forces influence articular cartilage structure by regulating chondrocyte activity. Mechanical stimulation results in activation of an alpha5beta1 integrin dependent intracellular signal cascade involving focal adhesion kinase and protein kinase C, triggering the release of interleukin-4 from the cell. In normal HAC the response to physiological(More)
OBJECTIVE To assess whether substance P and the corresponding neurokinin 1 (NK1) receptor are expressed in human articular cartilage, and whether these molecules have a role in chondrocyte mechanotransduction. METHODS Transgenic studies, immunohistochemistry, Western blotting, and reverse transcriptase-polymerase chain reaction were used to assess the(More)
The effect of UICC asbestos samples on the electrophysiology of cell membranes has been investigated in a permanent macrophage-like cell line. Membrane potential and input resistance were measured in cells exposed to chrysotile, crocidolite or amosite in media with and without serum. This approach has demonstrated that different fibres can cause different(More)
Extracellular nucleotides have been shown to have diverse effects on chondrocyte function, generally acting via P2 purinoceptors. We have previously shown that mechanical stimulation at 0.33 Hz of normal human chondrocyte cultures causes cellular hyperpolarisation, while chondrocytes derived from osteoarthritic (OA) cartilage depolarise. Experiments have(More)
OBJECTIVE To determine molecular events in the regulation of messenger RNA (mRNA) of cartilage matrix molecules and proteases by mechanical stimulation of chondrocytes from normal human articular cartilage and to ascertain whether similar regulatory systems are present in chondrocytes from osteoarthritic (OA) cartilage. METHODS Chondrocytes extracted from(More)
BACKGROUND Recent studies provide evidence of roles for integrins in mechanical signalling in bone and cartilage. Integrin signalling is modulated by various mechanisms, including interaction with other transmembrane proteins. We aimed to identify whether one such protein, integrin-associated protein (CD47/IAP), is expressed by chondrocytes and whether it(More)