Malcolm M. Campbell

Learn More
The amino acid glycine has a well-established role in signalling in the mammalian central nervous system. For example, glycine acts synergistically with the major excitatory neurotransmitter, glutamate, to regulate the influx of ions such as calcium, through N-methyl-d-aspartate (NMDA) receptors. Plants possess NMDA-like receptors, generically referred to(More)
Epigenetic variation is likely to contribute to the phenotypic plasticity and adaptative capacity of plant species, and may be especially important for long-lived organisms with complex life cycles, including forest trees. Diverse environmental stresses and hybridization/polyploidization events can create reversible heritable epigenetic marks that can be(More)
Stomata, dynamic pores found on the surfaces of plant leaves, control water loss from the plant and regulate the uptake of CO(2) for photosynthesis. Stomatal aperture is controlled by the two guard cells that surround the stomatal pore. When the two guard cells are fully turgid, the pore gapes open, whereas turgor loss results in stomatal closure. In order(More)
Experiments were undertaken to investigate some of the mechanisms that may function to regulate lignin biosynthesis (lignification) in Arabidopsis thaliana. Northern blot analyses revealed that several genes encoding enzymes involved in the synthesis of lignin monomers displayed significant changes in transcript abundance over a diurnal cycle. Northern blot(More)
Plants that hyperaccumulate Ni exhibit an exceptional degree of Ni tolerance and the ability to translocate Ni in large amounts from root to shoot. In hyperaccumulator plants in the genus Alyssum, free His is an important Ni binding ligand that increases in the xylem proportionately to root Ni uptake. To determine the molecular basis of the His response and(More)
Much is known about the physiological control of stomatal aperture as a means by which plants adjust to water availability. By contrast, the role played by the modulation of stomatal development to limit water loss has received much less attention. The control of stomatal development in response to water deprivation in the genus Populus is explored here.(More)
Despite the prominent roles played by R2R3-MYB transcription factors in the regulation of plant gene expression, little is known about the details of how these proteins interact with their DNA targets. For example, while Arabidopsis thaliana R2R3-MYB protein AtMYB61 is known to alter transcript abundance of a specific set of target genes, little is known(More)
Drought has a major impact on tree growth and survival. Understanding tree responses to this stress can have important application in both conservation of forest health, and in production forestry. Trees of the genus Populus provide an excellent opportunity to explore the mechanistic underpinnings of forest tree drought responses, given the growing(More)
The relationship between intra-specific variation in the Populus transcriptome, stomatal development, and the metabolome in response to drought Drought is one of the most significant factors limiting tree growth. Trees in the genus Populus are particularly noted for their drought sensitivity; therefore, understanding the mechanisms by which these(More)
A number of cyclic and linear fragments and analogues of MCH were synthesized and their biological potencies tested using the isolated carp scale melanophore assay. In this system the cyclic portion MCH(5-14) exhibited only 0.1% bioactivity, which was markedly enhanced by the addition of the exocyclic sequences MCH(15-17) and MCH(1-4). The exocyclic(More)