Malcolm B Hodgins

Learn More
Nonhealing cutaneous wounds, a major cause of morbidity and mortality, are difficult to treat. Recent studies suggest that significant increases in skin wound-healing rates occur by altering gap junction intercellular communication (GJIC). As migration of keratinocytes and fibroblasts is an important feature of wound healing, this study investigated whether(More)
To investigate the role of connexins in dominantly inherited skin disease, transgenic mice were produced which expressed mutant connexin 26 [gjb2/connexin 26(D66H)], from a keratin 10 promoter, exclusively in the suprabasal epidermis (the cells in which Connexin 26 is up-regulated in epidermal hyperproliferative states). From soon after birth, the mice(More)
Three-dimensional (3D) organotypic models are increasingly used to study the aspects of epidermal organisation and cutaneous wound-healing events. However, these are largely dependent on laborious histological analysis and immunohistochemical approaches. Despite the large resource of transgenic and knockout mice harboring mutations relevant to skin(More)
In epidermis, it has been suggested, intercellular communication through gap junctions is important in coordinating cell behavior. The connexins, may facilitate selective assembly or permeability of gap junctions, influencing the distribution of metabolites between cells. Using immunohistochemistry, we have compared the distribution of connexins 26 and 43(More)
Dominant mutations of GJB2-encoding connexin-26 (Cx26) have pleiotropic effects, causing either hearing impairment (HI) alone or in association with palmoplantar keratoderma (PPK/HI). We examined a British family with the latter phenotype and identified a new dominant GJB2 mutation predicted to eliminate the amino acid residue E42 (DeltaE42) in Cx26. To(More)
Gap junction proteins (connexins) are differentially expressed throughout the multiple layers of the epidermis. A variety of skin conditions arise with aberrant connexin expression or function and suggest that maintaining the epidermal gap junction network has many important roles in preserving epidermal integrity and homeostasis. Mutations in a number of(More)
The vertebrate gap junctions formed by the connexin family of transmembrane proteins came to the attention of geneticists in 1993 with the identification of mutations linked to a form of demyelinating neuropathy. Since then, several other genetic disorders have been linked to mutations in specific connexin genes. Also, different diseases can result from(More)
A mouse monoclonal antibody against the N-terminal region of human androgen receptor (AR) was used to identify receptors by immunoperoxidase staining in frozen serial sections of skin from scalp, face, limb and genitalia of men and women aged 30-80 years. AR staining was restricted to cell nuclei. In sebaceous glands, AR were identified in basal and(More)
The control of cell-cell communication through gap junctions is thought to be crucial in normal tissue function and during various stages of tumorigenesis. However, few natural regulators of gap junctions have been found. We show here that increasing the activity of ornithine decarboxylase, or adding polyamines to the outside of cells, increases the level(More)
Gap junctions, composed of Cxs (connexins), allow direct intercellular communication. Gap junctions are often lost during the development of malignancy, although the processes behind this are not fully understood. Cx43 is a widely expressed Cx with a long cytoplasmic C-terminal tail that contains several potential protein-interaction domains. Previously, in(More)