Learn More
As an entry for the 2009 Gordon Bell price/performance prize, we present the results of two different hierarchical <i>N</i>-body simulations on a cluster of 256 graphics processing units (GPUs). Unlike many previous <i>N</i>-body simulations on GPUs that scale as <i>O</i>(<i>N</i><sup>2</sup>), the present method calculates the <i>O</i>(<i>N</i> log(More)
We have achieved a sustained performance of 55 TFLOPS for molecular dynamics simulations of the amyloid fibril formation of peptides from the yeast Sup35 in an aqueous solution. For performing the calculations, we used the MDGRAPE-3 system---a special-purpose computer system for molecular dynamics simulations. Its nominal peak performance was 415 TFLOPS for(More)
We report on resent astrophysical N-body simulations performed on the GRAPE-4 (GRAvity PipE 4) system, a special-purpose computer for astrophysical N-body simulations. We first review the astrophysical motivation, the algorithm, the structure of the GRAPE system, and the actual performance. The GRAPE-4 system consists of 1692 pipeline processors. The peak(More)
We describe the GRAPE-4 (Gravity Pipe 4) system, a special-purpose computer for astrophysical N-body simulations. In N-body simulations, most of the computing time is spent to calculate the force between particles, since the number of interactions is proportional to the square of the number of particles. For many problems the accuracy of fast algorithms(More)
We developed a PCI interface for GRAPE systems. GRAPE(GRAvity piPE) is a special-purpose computer for gravitational N-body simulations. A GRAPE system consists of GRAPE processor boards and a host computer. GRAPE processors perform the calculation of gravitational forces between particles. The host computer performs the rest of calculations. The newest of(More)