Learn More
It has been demonstrated previously that 2,4-dichlorophenoxybutyric acid (2,4-DB) is metabolized to produce a herbicide, 2,4-D, by the action of peroxisomal fatty acid beta-oxidation in higher plants. To isolate mutants that have defects in peroxisomal fatty acid beta-oxidation, we screened mutant lines of Arabidopsis seedlings for growth in the presence of(More)
The legume Lotus japonicus has been widely used as a model system to investigate the genetic background of legume-specific phenomena such as symbiotic nitrogen fixation. Here, we report structural features of the L. japonicus genome. The 315.1-Mb sequences determined in this and previous studies correspond to 67% of the genome (472 Mb), and are likely to(More)
Expression of miR398 is induced in response to copper deficiency and is involved in the degradation of mRNAs encoding copper/zinc superoxide dismutase in Arabidopsis thaliana. We found that SPL7 (for SQUAMOSA promoter binding protein-like7) is essential for this response of miR398. SPL7 is homologous to Copper response regulator1, the transcription factor(More)
The interactions of legumes with symbiotic nitrogen-fixing bacteria cause the formation of specialized lateral root organs called root nodules. It has been postulated that this root nodule symbiosis system has recruited factors that act in early signaling pathways (common SYM genes) partly from the ancestral mycorrhizal symbiosis. However, the origins of(More)
The roots of most higher plants form arbuscular mycorrhiza, an ancient, phosphate-acquiring symbiosis with fungi, whereas only four related plant orders are able to engage in the evolutionary younger nitrogen-fixing root-nodule symbiosis with bacteria. Plant symbioses with bacteria and fungi require a set of common signal transduction components that(More)
Transposable elements represent a large proportion of the eukaryotic genomes. Long Terminal Repeat (LTR) retrotransposons are very abundant and constitute the predominant family of transposable elements in plants. Recent studies have identified chromoviruses to be a widely distributed lineage of Gypsy elements. These elements contain chromodomains in their(More)
Expression and localization of myo-inositol-1-phosphate synthase (MIPS) in developing seeds of Arabidopsis thaliana was investigated. MIPS is an essential enzyme for production of inositol and inositol phosphates via its circularization of glucose-6-phosphate as the initial step. myo-inositol-6-phosphate (InsP(6) or phytic acid) is the predominant form of(More)
In many animal groups, left-right (LR) asymmetry within the body is observed. The left and right sides of the body are generally defined with reference to the anterior-posterior (AP) and dorsal-ventral (DV) axes. In this study, we investigated whether LR asymmetry is solely dependent on the AP and DV polarities in Drosophila embryos. We focused on the(More)
To study the level of ciliary neurotrophic factor (CNTF) in human nervous tissues, we developed a sensitive enzyme-linked immunoassay using a specific antibody against human CNTF. This method allowed us to detect as little as 0.3 ng/ml of human CNTF with good linearity and accuracy. Using this method, CNTF levels were determined in human sciatic nerves(More)
Telomere shortening and disruption of telomeric components are pathways that induce telomere deprotection. Here we describe another pathway, in which prolonged mitotic arrest induces damage signals at telomeres in human cells. Exposure to microtubule drugs, kinesin inhibitors, proteasome inhibitors or the disruption of proper chromosome cohesion resulted in(More)