Learn More
mGluR1 mutant mice are viable but show characteristic cerebellar symptoms such as ataxic gait and intention tremor. The anatomy of the cerebellum is not overtly disturbed. Excitatory synaptic transmission from parallel fibers (PFs) to Purkinje cells and that from climbing fibers (CFs) to Purkinje cells appear to be functional, and voltage-gated Ca2+(More)
Persistent changes in synaptic efficacy are thought to underlie the formation of learning and memory in the brain. High-frequency activation of an afferent excitatory fibre system can induce long-term potentiation, and conjunctive activation of two distinct excitatory synaptic inputs to the cerebellar Purkinje cells can lead to long-term depression of the(More)
The spontaneous recessive mutant mouse stargazer (stg) begins to show ataxia around postnatal day 14 and display a severe impairment in the acquisition of classical eyeblink conditioning in adulthood. These abnormalities have been attributed to the specific reduction in brain-derived neurotrophic factor (BDNF) and the subsequent defect in TrkB receptor(More)
To study the function of GLAST, a glutamate transporter highly expressed in the cerebellar Bergmann astrocytes, the mouse GLAST gene was inactivated. GLAST-deficient mice developed normally and could manage simple coordinated tasks, such as staying on a stationary or a slowly rotating rod, but failed more challenging task such as staying on a quickly(More)
Climbing fiber (CF) synapse formation onto cerebellar Purkinje cells (PCs) is critically dependent on the synaptogenesis from parallel fibers (PFs), the other input to PCs. Previous studies revealed that deletion of the glutamate receptor delta2 subunit (GluRdelta2) gene results in persistent multiple CF innervation of PCs with impaired PF synaptogenesis,(More)
Ligand binding to neurotransmitter and hormone receptors which couple to the Gq subclass of GTP-binding protein leads to the activation of phospholipase Cbeta (PLCbeta) which hydrolyses phosphatidyl-inositol 4,5-bisphosphate, yielding a pair of second messengers, diacylglycerol and inositol 1,4,5-trisphosphate (IP3). The expression of PLCbeta1-4 mRNAs was(More)
PKC gamma is highly expressed in Purkinje cells (PCs) but not in other types of neurons in the cerebellum. The expression of PKC gamma changes markedly during cerebellar development, being very low at birth and reaching a peak around the third postnatal week. This temporal pattern of PKC gamma expression coincides with the developmental transition from(More)
Glial cells support the survival and development of central neurons through the supply of trophic factors. Here we demonstrate that l-serine (l-Ser) and glycine (Gly) also are glia-derived trophic factors. These amino acids are released by astroglial cells and promote the survival, dendritogenesis, and electrophysiological development of cultured cerebellar(More)
Mice lacking the alpha-subunit of the heterotrimeric guanine nucleotide binding protein Gq (Galphaq) are viable but suffer from ataxia with typical signs of motor discoordination. The anatomy of the cerebellum is not overtly disturbed, and excitatory synaptic transmission from parallel fibers to cerebellar Purkinje cells (PCs) and from climbing fibers (CFs)(More)
Elimination of excess climbing fiber (CF)-Purkinje cell synapses during cerebellar development involves a signaling pathway that includes type 1 metabotropic glutamate receptor, Galphaq, and the gamma isoform of protein kinase C. To identify phospholipase C (PLC) isoforms involved in this process, we generated mice deficient in PLCbeta4, one of two major(More)