Learn More
mGluR1 mutant mice are viable but show characteristic cerebellar symptoms such as ataxic gait and intention tremor. The anatomy of the cerebellum is not overtly disturbed. Excitatory synaptic transmission from parallel fibers (PFs) to Purkinje cells and that from climbing fibers (CFs) to Purkinje cells appear to be functional, and voltage-gated Ca2+(More)
To study the function of GLAST, a glutamate transporter highly expressed in the cerebellar Bergmann astrocytes, the mouse GLAST gene was inactivated. GLAST-deficient mice developed normally and could manage simple coordinated tasks, such as staying on a stationary or a slowly rotating rod, but failed more challenging task such as staying on a quickly(More)
Persistent changes in synaptic efficacy are thought to underlie the formation of learning and memory in the brain. High-frequency activation of an afferent excitatory fibre system can induce long-term potentiation, and conjunctive activation of two distinct excitatory synaptic inputs to the cerebellar Purkinje cells can lead to long-term depression of the(More)
MOTIVATION To resolve the high-dimensionality of the genetic network inference problem in the S-system model, a problem decomposition strategy has been proposed. While this strategy certainly shows promise, it cannot provide a model readily applicable to the computational simulation of the genetic network when the given time-series data contain measurement(More)
The spontaneous recessive mutant mouse stargazer (stg) begins to show ataxia around postnatal day 14 and display a severe impairment in the acquisition of classical eyeblink conditioning in adulthood. These abnormalities have been attributed to the specific reduction in brain-derived neurotrophic factor (BDNF) and the subsequent defect in TrkB receptor(More)
Targeted deletion of metabotropic glutamate receptor-subtype 1 (mGluR1) gene can cause defects in development and function in the cerebellum. We introduced the mGluR1alpha transgene into mGluR1-null mutant [mGluR1 (-/-)] mice with a Purkinje cell (PC)-specific promoter. mGluR1-rescue mice showed normal cerebellar long-term depression and regression of(More)
Climbing fiber (CF) synapse formation onto cerebellar Purkinje cells (PCs) is critically dependent on the synaptogenesis from parallel fibers (PFs), the other input to PCs. Previous studies revealed that deletion of the glutamate receptor delta2 subunit (GluRdelta2) gene results in persistent multiple CF innervation of PCs with impaired PF synaptogenesis,(More)
The glutamate receptor delta2 subunit (GluRdelta2) is specifically expressed in cerebellar Purkinje cells (PCs) from early developmental stages and is selectively localized at dendritic spines forming synapses with parallel fibers (PFs). Targeted disruption of the GluRdelta2 gene leads to a significant reduction of PF-->PC synapses. To address its role in(More)
Cannabinoid receptors are the molecular targets for the active component Delta(9)-tetrahydrocannabinol of marijuana and hashish, and constitute a major family of G protein-coupled seven-transmembrane-domain receptors. They consist of type 1 (CB1) and type 2 (CB2) receptors of which the CB1 is rich in various regions of the CNS. Accumulated evidence suggests(More)
Following cell surface receptor activation, the alpha subunit of the Gq subclass of GTP-binding proteins activates the phosphoinositide signalling pathway. Here we examined the expression and localization of Gq protein alpha subunits in the adult mouse brain by in situ hybridization and immunohistochemistry. Of the four members of the Gq protein alpha(More)