Joel K Elmquist6
Bradford B Lowell3
Jeffrey M Zigman3
6Joel K Elmquist
3Bradford B Lowell
Learn More
In Caenorhabditis elegans, an insulin-like signaling pathway, which includes the daf-2 and age-1 genes, controls longevity and stress resistance. Downregulation of this pathway activates the forkhead transcription factor DAF-16, whose transcriptional targets are suggested to play an essential role in controlling the phenotypes governed by this pathway. We(More)
Phosphatidyl inositol 3-kinase (PI3K) signaling in the hypothalamus has been implicated in the regulation of energy homeostasis, but the critical brain sites where this intracellular signal integrates various metabolic cues to regulate food intake and energy expenditure are unknown. Here, we show that mice with reduced PI3K activity in the ventromedial(More)
Circulating leptin and insulin convey information regarding energy stores to the central nervous system, particularly the hypothalamus. Hypothalamic pro-opiomelanocortin (POMC) neurons regulate energy balance and glucose homeostasis and express leptin and insulin receptors. However, the physiological significance of concomitant leptin and insulin action on(More)
In response to extracellular stimuli, mitogen-activated protein kinase (MAPK, also known as ERK), which localizes to the cytoplasm in quiescent cells, translocates to the nucleus and then relocalizes to the cytoplasm again. The relocalization of nuclear MAPK to the cytoplasm was not inhibited by cycloheximide, confirming that the relocalization is achieved(More)
Studies have suggested that manipulations of the central melanocortin circuitry by pharmacological agents produce robust effects on the regulation of body weight and glucose homeostasis. In this review, we discuss recent findings from genetic mouse models that have further established the physiological relevance of this circuitry in the context of glucose(More)
Mice lacking 5-HT 2C receptors (5-HT(2C)Rs) displayed hepatic insulin resistance, a phenotype normalized by re-expression of 5-HT(2C)Rs only in pro-opiomelanocortin (POMC) neurons. 5-HT(2C)R deficiency also abolished the anti-diabetic effects of meta-chlorophenylpiperazine (a 5-HT(2C)R agonist); these effects were restored when 5-HT(2C)Rs were re-expressed(More)
The PI3K-Akt-FoxO1 pathway contributes to the actions of insulin and leptin in several cell types, including neurons in the CNS. However, identifying these actions in chemically identified neurons has proven difficult. To address this problem, we have developed a reporter mouse for monitoring PI3K-Akt signaling in specific populations of neurons, based on(More)
The GTPase Ran is known to regulate transport of proteins across the nuclear envelope. Recently, Ran has been shown to promote microtubule polymerization and spindle assembly around chromatin in Xenopus mitotic extracts and to stimulate nuclear envelope assembly in Xenopus or HeLa cell extracts. However, these in vitro findings have not been tested in(More)
Chronic low-grade inflammation is a hallmark of obesity and thought to contribute to the development of obesity-related insulin resistance. Toll-like receptor 4 (Tlr4) is a key mediator of pro-inflammatory responses. Mice lacking Tlr4s are protected from diet-induced insulin resistance and inflammation; however, which Tlr4-expressing cells mediate this(More)
Studies have indicated that the neurotransmitter nitric oxide (NO) mediates leptin's effects in the neuroendocrine reproductive axis. However, the neurons involved in these effects and their regulation by leptin is still unknown. We aimed to determine whether NO neurons are direct targets of leptin and by which mechanisms leptin may influence neuronal NO(More)