Learn More
The classic phenotype of Fabry disease, X-linked alpha -galactosidase A (alpha -Gal A) deficiency, has an estimated incidence of approximately 1 in 50,000 males. The recent recognition of later-onset variants suggested that this treatable lysosomal disease is more frequent. To determine the disease incidence, we undertook newborn screening by assaying the(More)
Mutations in the gene that encodes the lysosomal exoglycohydrolase, alpha-galactosidase A (alpha-GalA), cause Fabry disease, an X-linked recessive inborn error of glycosphingolipid catabolism. Human alpha-GalA is one of the rare mammalian genes that has its polyadenylation signal in the coding sequence and lacks a 3' untranslated region (UTR). We identified(More)
Fabry disease, an X-linked recessive inborn error of glycosphingolipid catabolism, results from the deficient activity of the lysosomal exoglycohydrolase, α-galactosidase A (EC; α-Gal A). The molecular lesions in the α-Gal A gene causing the classic phenotype of Fabry disease in 66 unrelated families were determined. In 49 families, 50 new(More)
Congenital erythropoietic porphyria (CEP), an autosomal recessive inborn error, results from the deficient but not absent activity of uroporphyrinogen III synthase (URO-synthase), the fourth enzyme in the heme biosynthetic pathway. The major clinical manifestations include severe anemia, erythrodontia, and disfiguring cutaneous involvement due to the(More)
Erythropoietic protoporphyria (EPP) and X-linked protoporphyria (XLP) are inborn errors of heme biosynthesis with the same phenotype but resulting from autosomal recessive loss-of-function mutations in the ferrochelatase (FECH) gene and gain-of-function mutations in the X-linked erythroid-specific 5-aminolevulinate synthase (ALAS2) gene, respectively. The(More)
Accurate determinations of 5-aminolevulinic acid (ALA) and porphobilinogen (PBG) in physiologic fluids are required for the diagnosis and therapeutic monitoring of acute porphyrias. Current colorimetric methods are insensitive and over-estimate ALA and PBG due to poor specificity, while LC-MS/MS methods increase sensitivity, but have limited matrices. An(More)
Fabry disease, an X-linked inborn error of glycosphingolipid catabolism, results from mutations in the gene encoding the lysosomal exoglycohydrolase, alpha-galactosidase A (alpha-Gal A; GLA). In two unrelated classically affected males, two alpha-Gal A missense mutations were identified: R112C + D313Y (c.334C>T + c.937G>T) and C172G + D313Y (c.514T>G +(More)
The nature of the molecular lesions in the alpha-galactosidase A (alpha-Gal A) gene causing Fabry disease was determined in 50 unrelated families with the classic phenotype of this X-linked recessive lysosomal storage disease. Genomic DNA was isolated from affected males or obligate carrier females, and the entire alpha-Gal A coding region as well as the(More)
Acute intermittent porphyria (AIP), an autosomal dominant hepatic porphyria due to half-normal hydroxymethylbilane synthase (HMB-synthase) activity, is manifested by life-threatening acute neurological attacks that are precipitated by factors that induce heme biosynthesis. The acute attacks are currently treated with intravenous hemin, but a more continuous(More)
Whole-exome sequencing has been incredibly successful in identifying causal genetic variants and has revealed a number of novel genes associated with blood and other diseases. One limitation of this approach is that it overlooks mutations in noncoding regulatory elements. Furthermore, the mechanisms by which mutations in transcriptionalcis-regulatory(More)