Learn More
Regulatory T cells (T(reg) cells) are central to the maintenance of immune homeostasis. However, little is known about the stability of T(reg) cells in vivo. In this study, we demonstrate that a substantial percentage of cells had transient or unstable expression of the transcription factor Foxp3. These 'exFoxp3' T cells had an activated-memory T cell(More)
In the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D), an insulin peptide (B:9-23) is a major target for pathogenic CD4(+) T cells. However, there is no consensus on the relative importance of the various positions or "registers" this peptide can take when bound in the groove of the NOD MHCII molecule, IA(g7). This has hindered structural(More)
Apoptosis via Fas/Fas ligand (FasL) interactions has been proposed to be a major T-cell-mediated effector mechanism in autoimmune diabetes. To elucidate the role of Fas/FasL interactions in NOD diabetes, the effects of neutralizing anti-FasL antibody on autoimmune responses were evaluated. Islet-specific CD8(+) and CD4(+) T-cells expressed FasL upon(More)
A series of recent studies in humans and the NOD mouse model have highlighted the central role that autoimmunity directed against insulin, in particular the insulin B chain 9-23 peptide, may play in the pathogenesis of type 1 diabetes. Both pathogenic and protective T-cell clones recognizing the B:9-23 peptide have been produced. This report describes the(More)
ELIspot. IFNγ, IL-4, IL-17, IL-10 and IL-2 were determined with ELIspot. Spleen cells were prepared by homogenization in red blood cell lysis buffer (ACK or RBC [R7757, Sigma-Aldrich) and cultured at 2–4 x 10^5 cells/well in triplicate. B:12-23 (VEALYLVCGERG) and tetanus toxin (TT) peptide 830–843 (QYIKANSKFIGIFE) used for stimulation were purified with(More)
A fundamental question about the pathogenesis of spontaneous autoimmune diabetes is whether there are primary autoantigens. For type 1 diabetes it is clear that multiple islet molecules are the target of autoimmunity in man and animal models. It is not clear whether any of the target molecules are essential for the destruction of islet beta cells. Here we(More)
TGF-β signaling in T cells is critical for peripheral T-cell tolerance by regulating effector CD4(+) T helper (Th) cell differentiation. However, it is still controversial to what extent TGF-β signaling in Foxp3(+) regulatory T (Treg) cells contributes to immune homeostasis. Here we showed that abrogation of TGF-β signaling in thymic T cells led to rapid(More)
Regulation of metabolic pathways in the immune system provides a mechanism to actively control cellular function, growth, proliferation, and survival. Here, we report that miR-181 is a nonredundant determinant of cellular metabolism and is essential for supporting the biosynthetic demands of early NKT cell development. As a result, miR-181-deficient mice(More)
Type 1 diabetes (T1D) is caused mostly by autoimmune destruction of pancreatic beta-cells, the precise mechanism of which remains unclear. Two major effector mechanisms have been proposed: direct cell-mediated and indirect cytokine-mediated cytotoxicity. Cytokine-mediated beta-cell destruction is presumed mainly caused by NO production. To evaluate the role(More)
Although multiple islet autoantigens are recognized by T lymphocytes and autoantibodies before the development of type 1A (immune-mediated diabetes), there is increasing evidence that autoimmunity to insulin may be central to disease pathogenesis. Evidence is strongest for the NOD mouse model where blocking immune responses to insulin prevents diabetes, and(More)