Learn More
The toxicity and carcinogenicity of formaldehyde (HCHO) has been attributed to its ability to form adducts with DNA and proteins. A marked decrease in mitochondrial membrane potential and inhibition of mitochondrial respiration that was accompanied by reactive oxygen species formation occurred when isolated rat hepatocytes were incubated with low(More)
Pargyline, an antihypertensive agent and monoamine oxidase inhibitor, induces hepatic GSH depletion and hepatotoxicity in vivo in rats [E.G. De Master, H.W. Sumner, E. Kaplan, F. N. Shirota, H.T. Nagasawa, Toxicol. Appl. Pharmacol. 65 (1982) 390-401]. Propargyl alcohol (2-propyn-1-ol), because of its structural similarity to allyl alcohol, was thought to be(More)
Epidemiological and clinical observations provide consistent evidence that regular intake of aspirin may effectively inhibit the occurrence of epithelial tumors; however, the molecular mechanisms are not completely understood. In the present study, we determined the ability of aspirin to acetylate and post-translationally modify cellular proteins in HCT-116(More)
Quantitative structure toxicity relationship (QSTR) equations were obtained to predict and describe the cytotoxicity of 31 phenols using logLD(50) as a concentration to induce 50% cytotoxicity of isolated rat hepatocytes in 2 h and logP as octanol/water partitioning: logLD(50) (microM)=-0.588(+/-0.059)logP+4.652(+/-0.153) (n=27, r(2)=0.801, s=0.261, P<1 x(More)
GSH was readily depleted by a flavonoid, H(2)O(2), and peroxidase mixture but the products formed were dependent on the redox potential of the flavonoid. Catalytic amounts of apigenin and naringenin but not kaempferol (flavonoids that contain a phenol B ring) when oxidized by H(2)O(2) and peroxidase co-oxidized GSH to GSSG via a thiyl radical which could be(More)
This review summarises current knowledge on the various molecular chemopreventive or therapeutic mechanisms that may be involved when the administration of flavonoids or polyphenols prevented chemical carcinogenesis in animal models. These mechanisms can be subdivided into the following: 1) the molecular mechanisms involved in preventing carcinogen(More)
In the current work, we investigated the in vitro biochemical mechanism of Caffeic Acid Phenylethyl Ester (CAPE) toxicity and eight hydroxycinnamic/caffeic acid derivatives in vitro, using tyrosinase enzyme as a molecular target in human SK-MEL-28 melanoma cells. Enzymatic reaction models using tyrosinase/O(2) and HRP/H(2)O(2) were used to delineate the(More)
Constant formation of free radicals mainly reactive oxygen species (ROS) is the main characteristic of all living systems which use oxygen for their basal metabolism. Primarily, ROS are considered an integral component of basic cell regulation and signaling pathways certainly, suppressing tumor progression which forms the basis of the most chemotherapeutic(More)
In current work, we investigated the in-vitro efficacy of Caffeic acid Phenethyl Ester (CAPE) as an anti-melanoma agent in five melanoma cell lines B16-F0, B16F10, SK-MEL-28, SK-MEL-5, and MeWo and in-vivo efficacy study in skin B16-F0 melanoma tumor model in C57BL/6 mice. The IC(50) (48 h) of CAPE in above five melanoma cell lines was 15 µM. CAPE (20-200(More)
Caffeic acid (CA) is found in a wide variety of foods such as vegetables, fruits, tea, coffee, and wine. However, enzymes involved in its metabolism have not been identified. In the following, caffeic (CA), chlorogenic (CGA), and dihydrocaffeic (DHCA) acids were incubated with hepatocytes and shown to undergo metabolism by cytochrome P450,(More)