Majid Sadeghifar

Learn More
Microarray technology results in high-dimensional and low-sample size data sets. Therefore, fitting sparse models is substantial because only a small number of influential genes can reliably be identified. A number of variable selection approaches have been proposed for high-dimensional time-to-event data based on Cox proportional hazards where censoring is(More)
Analysis of microarray data is associated with the methodological problems of high dimension and small sample size. Various methods have been used for variable selection in high-dimension and small sample size cases with a single survival endpoint. However, little effort has been directed toward addressing competing risks where there is more than one(More)
  • 1