Maja Jazvinšćak Jembrek

Learn More
To evaluate the possible role of 5-HT 1A and 5-HT 2A receptors in the anticonvulsant effect of swim stress, mice were pre-treated with agonists and antagonists of these receptors prior to exposure to stress and the intravenous infusion of picrotoxin. 8-OH-DPAT ((+/-)-8-hydroxy-2-(di-n-propylamino) tetralin) and WAY-100635 (a selective agonist and antagonist(More)
Alzheimer's disease (AD), the most common chronic and progressive neurodegenerative disorder, is characterized by extracellular deposits of amyloid β-peptides (Aβ) and intracellular deposits of hyperphosphorylated tau (phospho-tau) protein. Ceramides, the major molecules of sphingolipid metabolism and lipid second messengers, have been associated with AD(More)
The aim of this study was to improve our knowledge of the mechanisms leading to adaptive changes in gamma-aminobutyric acid(A) (GABA(A)) receptors following chronic drug treatment. Exposure (48 h) of human embryonic kidney (HEK 293) cells stably expressing recombinant alpha1beta2gamma2S GABA(A) receptors to the antagonist of benzodiazepine binding sites,(More)
Prolonged exposure to benzodiazepines, drugs known to produce tolerance and dependence and also to be abused, leads to adaptive changes in GABA(A) receptors. To further explore the mechanisms responsible for these phenomena, we studied the effects of prolonged diazepam treatment on the recombinant alpha(1)beta(2)gamma(2S) GABA(A) receptors, stably expressed(More)
AIMS Hypnotic zolpidem is a positive allosteric modulator of γ-aminobutyric acid (GABA) action, with preferential although not exclusive binding for α1 subunit-containing GABA(A) receptors. The pharmacological profile of this drug is different from that of classical benzodiazepines, although it acts through benzodiazepine binding sites at GABA(A) receptors.(More)
The aim of this study was to further elucidate the mechanisms involved in adaptive changes of GABA(A) receptors following prolonged exposure to flumazenil, the antagonist of benzodiazepine binding sites on GABA(A) receptors. The effects of prolonged flumazenil treatment were studied on recombinant alpha(1)beta(2)gamma(2S) GABA(A) receptors stably expressed(More)
RATIONALE Various studies have shown that stressful manipulations in rats and mice lower the convulsant potency of GABA-related, but also some GABA-unrelated convulsants. The mechanism of this anticonvulsive effect of stress is still unknown. OBJECTIVES We tested the possible involvement of alpha2-adrenoceptors in the previously observed anticonvulsive(More)
  • 1