Maja Jazvinšćak Jembrek

Learn More
Dietary antioxidant supplements have been considered for the prevention of neuronal oxidative injury and death. Recent studies indicate that excessive antioxidants could exert adverse effects, thereby questioning the safety of prolonged supplementation. The aim of our study was to investigate the effects of quercetin (up to 150 μM), the ubiquitous(More)
Oxidative stress is implicated in neuronal death in a variety of neurodegenerative diseases. In the present study, P19 neurons obtained by the differentiation procedure from mouse teratocarcinoma P19 cells were used to investigate the ability of quercetin, a plant-derived flavonoid, to prevent neuronal death induced by exposure to 150 μM or 1.5 mM hydrogen(More)
Alzheimer's disease (AD), the most common chronic and progressive neurodegenerative disorder, is characterized by extracellular deposits of amyloid β-peptides (Aβ) and intracellular deposits of hyperphosphorylated tau (phospho-tau) protein. Ceramides, the major molecules of sphingolipid metabolism and lipid second messengers, have been associated with AD(More)
Hypnotic zolpidem produces its effects via the benzodiazepine binding site in α1-containing GABAA receptors. The aim of the study was to assess the influence of duration of zolpidem treatment and its withdrawal, as well as the role of alpha1-containing GABAA receptors in the development of physical dependence and tolerance. Namely, recombinant receptors can(More)
Copper, a transition metal with essential biological functions, exerts neurotoxic effects when present in excess. The aim of the present study was to better elucidate cellular and molecular mechanisms of CuSO4 toxicity in differentiated P19 neurons. Exposure to 0.5 mM CuSO4 for 24 h provoked moderate decrease in viability, accompanied with barely increased(More)
AIM Zolpidem is a non-benzodiazepine agonist at benzodiazepine binding site in GABA(A) receptors, which is increasingly prescribed. Recent studies suggest that prolonged zolpidem treatment induces tolerance. The aim of this study was to explore the adaptive changes in GABA(A) receptors following short and long-term exposure to zolpidem in vitro. METHODS(More)
AIMS Hypnotic zolpidem is a positive allosteric modulator of γ-aminobutyric acid (GABA) action, with preferential although not exclusive binding for α1 subunit-containing GABA(A) receptors. The pharmacological profile of this drug is different from that of classical benzodiazepines, although it acts through benzodiazepine binding sites at GABA(A) receptors.(More)
  • 1